
DA53 Module - CC-BY-NC-SA 3.0

Compilation and Language Theory
14th revision

Stéphane GALLAND

DA53

Chapter 0
Overview of the module DA53

Stéphane GALLAND

DA53GOALS OF THIS MODULE

1
Study models, techniques and algorithms that permit to analyze a
text-based language

2

Study models, techniques and algorithms that permit to generate and
execute code

3
Study the techniques for the optimization of executable codes
(available soon)

2
MEMBRE DE

Module organization Recommendations Books

DA53OUTLINE

Overview of the module DA53

A Overview of the Compilation Theory

B Lexical Analysis

C Syntax Analysis

D Semantic Analysis and Intermediate Code Generation

E Run-time Environments

3
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53TOOLS

Languages

Java — tutorials and projects

C/C++/C# — projects

Integrated Development Environment

Eclipse — tutorials and projects

NetBean, IntelliJ, Visual Studio — projects

Compilation Tools

javacc — tutorials, projects

Xtext — projects

jlex, lex, flex, yacc, bison — projects

4
MEMBRE DE

Module organization Recommendations Books

DA53ANOTHER YET ENGLISH MODULE

Lectures

Supervised tutorials []

Laboratory works []

Exams

5
MEMBRE DE

Module organization Recommendations Books

DA53EVALUATION OF THE STUDENTS

Laboratory
works 40%

Project — see
DA50

Mid-Term
Exam 30%

Final Exam
30%

6
MEMBRE DE

Module organization Recommendations Books

DA53RECOMMENDED KNOWLEDGE

1

Object Oriented
Programming

Java, C#, C++, Python

2

CLI Compilation

Java, g++, Maven, Make

3

Algorithms

Statements, Data structures

7
MEMBRE DE

Module organization Recommendations Books

DA53BEST WAY TO FOLLOW THE LECTURES

1

Download the PDF files of
the slides before the lecture

2

Do not read each word of
the slides during the
lectures

3

Listen carefully the teachers
and takes notes on the side
of the slides

4
Ask questions . . . Ask
questions . . . Ask questions

5
You must read the slides at
home as soon as possible,
not few hours before the
exams

8
MEMBRE DE

Module organization Recommendations Books

DA53RECOMMENDED BOOK

Compilers — Principles, Techniques and Tools Second
Edition
2nd edition

Alfred V. AHO, Monica S. LAM, Ravi SETHI and Jeffrey D.
ULLMAN

Pearson & Addison Wesley, 2007

ISBN 0-321-48681-1

9
MEMBRE DE

Module organization Recommendations Books

DA53RECOMMENDED BOOK

Parsing Techniques — A Practical Guide

Dick Grune and Ceriel J.H. Jacobs

Springer Verlag New York, 2007

ISBN 0-387-20248-X

10
MEMBRE DE

Module organization Recommendations Books

DA53RECOMMENDED BOOK

Calculabilité, Complexité et Approximation

Jean-François REY

Vuibert, France, 2004

ISBN 2-7117-4808-1

11
MEMBRE DE

Module organization Recommendations Books

DA53

Chapter 1
Overview of the Compilation Theory

Stéphane GALLAND

DA53OUTLINE

1 Introduction

2 Programming languages

3 What is a language processor?

4 Process of a compiler

5 Tools to create a compiler

6 Conclusion

2
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53BASE PRINCIPLES OF COMPUTING

Programming languages are notations for describing computations to people and
to machines

All the software running on all the computers was written in some programming
language

Before a program can be run, it first must be translated into a form in which it
can be executed by a computer

The software systems that do this translation are called a compiler

3
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53GOAL OF THIS CHAPTER

Overview of the principles, architecture and implementation of a simple compiler

With this chapter, you may understand the key points of language theory

4
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53OUTLINE

1 Introduction

2 Programming languages
Brief history
Classifications and types of programming languages
Basics of programming languages

3 What is a language processor?

4 Process of a compiler

5 Tools to create a compiler

6 Conclusion

5
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53BRIEF HISTORY OF MAIN PROGRAMMING LANGUAGES

1843
Ada Lovelace's first

machine algo.

1945
Konrad Zuse's
Plan Calculus,

first programming
language

1949
Assembly lang. for

EDSAC
 + Shortcode (3GL) by
McCauley & Schmitt

1952
Autocode, first

compiled language

1957
FORTRAN by J. Backus

1958
Algorithmic lang.
(ALGOL) father of

Pascal, C/C++, Java
+ LISP by McCarthy

1959
Common Business
Oriented Language

(COBOL)

1964
Beginner’s All-Purpose
Symbolic Instruction

Code (BASIC)

1970
PASCAL, Smalltalk,

C, SQL

1981
ADA by J. Ichbiah

1983
C++ & Objective-C

1987
Perl by Larry Wall

1990
Haskel funct. lang.

1991
Python by Van Rossum

+ VB by Microsoft

1993
Ruby by Matsumoto

1995
Java by Gosling

+ PHP by Lerdorf
+ Javascript by Eich

2000
C# by Microsoft

2003
Scala by Odersky

+ Grovvy by Strachan
& McWhirter

2009
GO

2011
Kotlin by JetBrains

2014
Swift, SARL (UTBM)

6
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53MORE THAN 8,900 PROGRAMMING LANGUAGES

2017

Tcl/Tk 8.6.7
august 9, 2017

Perl 5.26
may 30, 2017

OCaml 4.04.2
june 23, 2017

OCaml 4.05.0
july 13, 2017

Python 3.6.3
october 3, 2017

Python 3.6.0
december 23, 2016

Swift 3.1
march 27, 2017

Swift 4.0
september 19, 2017

Java 9
september 21, 2017

C# 7.1
august 14, 2017

C# 7.0
march 2017

Ruby 2.4.2
sept. 14, 2017

Ruby 2.4
december 25, 2016

PHP 7.1
december 1, 2016

PHP 7.2
november 30, 2017

2018

Tcl/Tk 8.6.8
december 22, 2017

Python 3.7.0
june 27, 2018

Swift 4.1
april 29, 2018

C# 7.2
february 20, 2018

C# 7.3
may 7, 2018

Ruby 2.5.0
dec. 25, 2017

Ruby 2.5.1
march 28, 2018

Perl 5.26.1
september 22, 2017

Perl 6 2018,04
may 7, 2018

Perl 6 2018,06
june 27, 2018

OCaml 4.06.0
november 3, 2017

Java 10,0
april 20, 2018

ISO/IEC C++ (C++17)
december 1, 2017

Perl 5.30.0
may 22, 2018

ECMAScript ed8
june 2017

ECMAScript ed9
june 2018

ISO/IEC C (C17)
june 2018

OCaml 4.07.0
july 10, 2018

PHP 7.3
december 6, 2018

Java 11
september 25, 2018

2019

Tcl/Tk 8.6.9
november 16, 2018

Python 3.7.4
july 8, 2019

Swift 5.1
april 19, 2019

Swift 5
march 25, 2019

Ruby 2.6.3
april 17, 2019

Ruby 2.6
december 25, 2018

PHP 7.3.8
july 30, 2019

OCaml 4.08.0
june 14, 2019

Java 12
march 19, 2019

ECMAScript ed10
june 2019

Tcl/Tk 8.6.10
november 21, 2019

Python 3.8.0
october 14, 2019

Java 13
september 2019

Ruby 2.7.0
december 25, 2019

OCaml 4.09.0
september 18, 2019

C# 8.0
september 2019

2020

Python 3.9.0
october 5, 2020

Swift 5.2
march 24, 2020

Swift 5.3
september 16, 2020

Java 14
march 2020

Java 15
september 2020

ECMAScript ed11
june 2020

Ruby 3.0.0
december 25, 2020

PHP 7.4.12
october 29, 2020

Perl 5.32.0
june 21, 2020

OCaml 4.10.0
february 20, 2020

OCaml 4.11.0
august 19, 2020

C# 9.0
september 2020

Figure by Éric Lévénez — www.levenez.com/lang

7
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

www.levenez.com/lang

DA53OUTLINE

1 Introduction

2 Programming languages
Brief history
Classifications and types of programming languages
Basics of programming languages

3 What is a language processor?

4 Process of a compiler

5 Tools to create a compiler

6 Conclusion

8
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53GENERATIONS OF PROGRAMMING LANGUAGES

Machine languages
1GL

0100101101

Assembly languages
2GL

Intel, Motorola. . .

High-level languages
3GL

Fortran, Cobol, Lisp, C,
C++, C#, Java. . .

Domain-specific
languages

4GL
SQL, Postscript, HTML,
SARL. . .

Logic and constraint
languages

5GL
Prolog, OPS5, Object-Z. . .

9
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53IMPERATIVE VS. DECLARATIVE LANGUAGE

Imperative

HOW a computation is to be done
Notion of program state, statements and control

flow
(C, C++, C#, Java)

Declarative

WHAT computation is to be done
Description of the logic of computation but not

its control flow
(ML, Haskell, Prolog, SQL, HTML)

10
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53TYPES OF PROGRAMMING LANGUAGES

[F
ir
m
e
et

a
l.
,
2
0
1
3
]
-
w
w
w
.
v
i
m
u
s
t
a
r
.
c
o
m

Query
Markup

...

FunctionalLogicParallel
Processing

Object
Oriented

Procedural

Imperative Declarative

Paradigms

Scripting Actor/Agent

Dataflow

11
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

www.vimustar.com

DA53STATIC VS. DYNAMIC TYPING

Run-time

Compile time

Check type here

Static typing

Check type here

Dynamic typing

12
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53STRONGLY VS. WEAKLY TYPED LANGUAGE

A variable may be associated to a type of values, i.e. the definition of a set of values

var type

Strongly Typed

Single type for each variable
Type defined at compile time

⊕reliable
⊖tedious to
write type
annotations

var
type1
type2

type3

Weakly Typed

Variable type depends on the
run-time context

Values are converted at
run-time

⊕flexible
⊖unexpected
run-time
errors

13
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53OUTLINE

1 Introduction

2 Programming languages
Brief history
Classifications and types of programming languages
Basics of programming languages

Definitions
Environment and state
Static or dynamic policy
Parameter-passing mechanisms

3 What is a language processor?

4 Process of a compiler

5 Tools to create a compiler

6 Conclusion
14

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53SEVERAL KEY DEFINITIONS

[S
et
h
i,
1
9
9
6
,
S
co

tt
,
2
0
0
6
]

Name

A string of characters that refers to a thing in the program

Identifier

A string of characters that refers to an entity (data object, procedure, class, type)

All identifiers are names; but not all names are identifiers

x.y is a name but not an identifier, and x and y are identifiers.

Variable

A particular location of the store of the values at run-time.
A variable is denoted by a name. Each declaration of an identifier introduces a new
variable.

Keyword

An identifier that has a particular meaning to the programming language

15
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53SEVERAL KEY DEFINITIONS (CONT.)

[S
et
h
i,
1
9
9
6
,
S
co

tt
,
2
0
0
6
]

Program or Subprogram

A sequence of instructions and statements

Procedure

A subprogram with a name and formal parameters that may be called

Function

A procedure that may return a value of some type (the“return type”)

Method

A procedure or a function inside a class in object-oriented languages

Caution

In the C-family languages, all the subprograms are functions; and a function is enabled
to return nothing (void)

16
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53SEVERAL KEY DEFINITIONS (CONT.)

[S
et
h
i,
1
9
9
6
,
S
co

tt
,
2
0
0
6
]

Declaration

Tells us about the type of an element. Example: int i ;

Definition

Tells us about the value of an element. Example: i = 1;

Signature of a procedure/function

The declaration of the procedure/function
Composed of: a return type, an identifier, and a collection of parameter declarations

Example

In C++:

a method is declared in a .hpp file

a method is defined in a .cpp file

17
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53ENVIRONMENT AND STATE

Association of names with locations in memory (the store) and then with values is
described by two mappings:

Environment: mapping from names to locations in the store.

State: mapping from locations in store to their values.

Locations
(variables) ValuesNames

Environment State

18
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53EXAMPLE OF ENVIRONMENT AND STATE

i n t i ; /* g l o b a l i */
. . .
vo id f (. . .) {

i n t i ; /* l o c a l i */
. . .
i = 3 ; /* use o f l o c a l i */
. . .

}
. . .
x = i + 1 ; /* use o f g l o b a l i */

Variable: i
In: global scope Value: X

Name: i

Variable: i
In: f Value: 3

19
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53STATIC OR DYNAMIC POLICY

One of the most important issues when designing a compiler is related to the
decisions the compiler make about the program

Static Policy

A program uses a policy that enables the compiler to decide an issue; the decision
could be decided at compile time.

Dynamic Policy

The decision can be made when we execute the program; the decision is required at
run time.

20
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53EXAMPLE: DECLARATION SCOPE

[C
h
u
rc
h
,
,
F
re
g
e,

1
9
6
7
,
W
ex
el
b
la
t,

1
9
8
1
]

Static Scope

A language uses a static scope if it is possible to determine the scope of a declaration
by looking only at the program (C, Java. . .)

Dynamic Scope

With dynamic scope, as the program runs, the same use of a variable x could refer to
any of several different declarations of x (Perl, PHP. . .)

21
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53“STATIC” TERM USE IN JAVA

public static int x = 1;

Here static refers not to the scope of the variable, but rather to the ability of the
compiler to determine the location in memory

If static is omitted each object has this variable and the compiler cannot
determine where it is in advance

22
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53ARE ENVIRONMENT AND STATE MAPPINGS DYNAMIC OR STATIC?

Environment and state mappings are often dynamic

Static or Dynamic Environment Mapping?

Most of binding names to locations are dynamic

Some declarations (e.g., global i) are determine at compile time; they are static

Static or Dynamic State Mapping?

Most of binding locations to values are dynamic because it is impossible to
determine the location until we run the program

Declared constants are an exception

23
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53PARAMETER-PASSING MECHANISMS

All programming languages have the notion of procedur; but they can differ in how
these procedures get their arguments

How are the actual parameters (the parameters used in the call of a procedure)
associated with the formal parameters (those used in the procedure definition)?

1O Call-by-value 2O Call-by-reference 3O Call-by-name

24
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA531O CALL-BY-VALUE

Principle

Actual parameter is evaluated or copied

Value is in the location of the formal parameter

Constraints

Changes to formal parameter is local to the procedure

Actual parameters themselves cannot be changed

Example

Used in C and Java; and the default option in C++

Caution

In Java, all the object variables are references (or pointers) to the objects. Parameters
are passed with the call-by-value policy, not the call-by-reference

25
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA532O CALL-BY-REFERENCE

Principle

Address of the actual parameter is passed to the callee as the value of the
corresponding formal parameter

Uses of the formal parameter are implemented by following the pointer to the
location indicated by the caller

Constraints

Changes to the formal parameter thus appear as changes to the actual parameter

26
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA533O CALL-BY-NAME

Principle

It requires that the callee execute as if the actual parameter were substituted
literally for the formal parameter in the code of the callee

Uses of the formal parameter are implemented by following the pointer to the
location indicated by the caller

Example

Macro-functions in the C-family languages use this parameter passing mechanism

27
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53OUTLINE

1 Introduction

2 Programming languages

3 What is a language processor?

4 Process of a compiler

5 Tools to create a compiler

6 Conclusion

28
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53WHAT IS A COMPILER?

Read a program in one language — the source language
Translate it into an equivalent program in a low-level language — the target
language
Report any errors in the source program that are detected during the translation
process

Compiler

Source program

Target program

29
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53WHAT IS A TRANSPILER?

Read a program in one language — the source language
Translate it into an equivalent program in another language that is not
low-level — the target language
Report any errors in the source program that are detected during the translation
process

Transpiler

Source program

Target program

30
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53RUNNING THE PROGRAM

If the target program is an executable machine-language program, it can then be called
by the user to process inputs and produce outputs

Target
Program

Inputs

Outputs

31
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53WHAT IS AN INTERPRETER?

A kind of language processor

Does not produce a target program

Directly execute the operations specified in the source program on inputs supplied
by the user

Interpreter

Source program

Outputs

Inputs

32
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53WHAT IS AN HYBRID COMPILER?

Combine compilation and interpretation
Generate intermediate program in a platform-independent language
Execute the intermediate program in a platform-dependent virtual machine

Translator
(Compiler)

Source program

Intermediate program
Virtual Machine

(Processor)Inputs
Outputs

33
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53PROPERTIES OF THE LANGUAGE PROCESSORS

Compiler v.s. Transpiler v.s. Interpreter

Compiler and transpiler is faster than interpreter at mapping inputs to outputs

Interpreter gives better error diagnostics than compiler, because it executes the source program
statement by statement (no code optimization)

Hybrid Compiler

Compile on one machine/architecture, execute the generated program on another
machine/architecture

To be faster, use just-in-time compilers to translate intermediate programs into machine
language and avoid the interpretation, e.g., the Oracle’s Java Runtime Environment

34
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53TOOLCHAIN

Several programs may be required to create an executable target program

They compose the toolchain of the compiler

PreprocessorSource program Modified source program

CompilerTarget assembly program

Assembler Relocatable machine code

Linker/
Loader

Target machine code Library files
Relocatable object files

35
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53PREPROCESSOR IN THE TOOLCHAIN

Goals

To collect the different files of the program’s modules to compile

To expand shorthands, macros into statements

PreprocessorSource program Modified source program

CompilerTarget assembly program

Assembler Relocatable machine code

Linker/
Loader

Target machine code Library files
Relocatable object files

Preprocessor

36
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53COMPILER IN THE TOOLCHAIN

Goals

To produce an assembly-language program from the modified source program

Assembly-language is easier to produce and debug

PreprocessorSource program Modified source program

CompilerTarget assembly program

Assembler Relocatable machine code

Linker/
Loader

Target machine code Library files
Relocatable object files

Compiler

37
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53ASSEMBLER IN THE TOOLCHAIN

Goals

To translate to a machine code that could be relocated in the code segment of the program

Code segment: the part of the memory where machine code is store

PreprocessorSource program Modified source program

CompilerTarget assembly program

Assembler Relocatable machine code

Linker/
Loader

Target machine code Library files
Relocatable object files

Assembler

38
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53LINKER IN THE TOOLCHAIN

Goals

To resolve external memory addresses, where the code in one file (library or object) may refer to
a location in another file (library or object)

PreprocessorSource program Modified source program

CompilerTarget assembly program

Assembler Relocatable machine code

Linker/
Loader

Target machine code Library files
Relocatable object files

Linker/
Loader

39
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53OUTLINE

1 Introduction

2 Programming languages

3 What is a language processor?

4 Process of a compiler

5 Tools to create a compiler

6 Conclusion

40
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53PROCESS OF A COMPILER

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Analysis

The analysis breaks up the source program into constituent
pieces and imposes a grammatical structure to them.

It detects if the source program is ill formed or semantically
unsound.

It collects informations about the source program and stores it in
a data structure called symbol table.

This part is often called the front end of the compiler.

41
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53PROCESS OF A COMPILER

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Code Generator

Machine-Dependent
Code Optimizer

Synthesis

The synthesis constructs the desired target program from the
intermediate representation and the information in the symbol
table.

This part is often called the back end of the compiler.

42
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53LEXICAL ANALYSIS OR SCANNING

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Lexical Analyzer

Reads the stream of characters making up the source program

Groups the characters into meaningful sequences called lexemes

Output for each lexeme:

token=<token-name, attribute-value>

token=name: the identifier of the token
attribute=value: entry in the symbol table for this token

43
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53EXAMPLE OF SCANNING

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Lexical Analyzer

position = initial + rate * 60

Lexeme Token
position <id,1>

id: abstract symbol standing for “identifier”

“1”: points to the symbol-table entry for position

= <=>
initial <id,2>
+ <+>
rate <id,3>
* <*>
60 <number,60>

44
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53EXAMPLE OF SCANNING

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Lexical Analyzer
position = initial + rate * 60

<id,1><=><id,2><+><id,3><*><number,60>

1 position float ...
2 initial float ...
3 rate float ...

Symbol Table

45
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53SYMBOL TABLE

Symbol Table

Central data structure containing a record for each variable name, with record fields for
the attributes associated to the name

Record Attribute

Information about the storage allocated for a name: type, scope, number and types of
the formal parameters, the method of passing each argument, and the type of the
returned value

Caution

Should be designed to allow the compiler to find the record for each name quickly and
to store or retrieve data from that record quickly

46
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53SYMBOL TABLE AND SCOPE

Scopes are implemented by setting up a separate symbol table for each scope

Principle

The most-closely nested rule for blocks permits to define a data structure, which is
based on chained symbol tables.

Block 0

Block 1

Block 3

to enclosing
block

to enclosing
block

current context

47
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53SIMPLE JAVA IMPLEMENTATION OF THE SYMBOL TABLE CHAIN

/** Def i n e the p r o p e r t i e s o f a s i n g l e symbol . */
pub l i c c l a s s Symbol {
pub l i c f i n a l S t r i n g lexeme ;
pub l i c Type type ;
pub l i c Address s t o r a g eP o s i t i o n ;
pub l i c Symbol (S t r i n g lexeme) { t h i s . l exeme = lexeme ; }
}

/** Def i n e a symbol t a b l e . */
pub l i c c l a s s SymbolTable {

/** C o l l e c t i o n o f the symbol i n the c u r r e n t c on t e x t . */
p r i v a t e f i n a l Map<St r i ng , Symbol> t a b l e = new TreeMap<St r i ng , Symbol>() ;

/** Re f e r enc e to the symbol t a b l e t ha t i s a s s o c i a t e d to the e n c l o s i n g scope .
*/

p r i v a t e f i n a l SymbolTable en c l o s i n gEnv i r onmen t ;

/** Con s t r u c t o r . */
p r i v a t e SymbolTable (SymbolTable en c l o s i n gEnv i r onmen t) {

t h i s . e n c l o s i n gEnv i r onmen t = enc l o s i n gEnv i r onmen t ;
}

48
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53SIMPLE JAVA IMPLEMENTATION OF THE SYMBOL TABLE CHAIN

/** Dec l a r e a symbol i n the c u r r e n t c on t e x t . */
pub l i c vo id d e c l a r e (S t r i n g i d e n t i f i e r , Symbol symbol) {

t h i s . t a b l e . put (i d e n t i f i e r , symbol) ;
}

/** Get the d e f i n i t i o n o f a symbol i n the c u r r e n t contex t ,
o r i n an e n c l o s i n g scope . */

pub l i c Symbol ge t (S t r i n g i d e n t i f i e r) {
SymbolTable e = t h i s ;
Symbol symbol ;
wh i l e (e != n u l l) {

symbol = e . t a b l e . ge t (i d e n t i f i e r) ;
i f (symbol != n u l l) {

r e t u r n symbol ;
}
e = e . en c l o s i n gEnv i r onmen t ;

}
r e t u r n n u l l ;

}

49
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53SIMPLE JAVA IMPLEMENTATION OF THE SYMBOL TABLE CHAIN

/** Re f e r enc e to the c u r r e n t symbol t a b l e .
The r e f e r e n c e i s i n i t i a l i z e d wi th the
r oo t con t e x t (o r the g l o b a l c on t e x t) . */

p r i v a t e s t a t i c SymbolTable c u r r e n t = new SymbolTable (n u l l) ;

/** Re p l i e s the symbol t a b l e o f the c u r r e n t c on t e x t . */
pub l i c s t a t i c SymbolTable g e tCu r r en t () {

r e t u r n c u r r e n t ;
}

/** Open a new con t e x t and c r e a t e the c o r r e s p ond i n g
symbol t a b l e . */

pub l i c s t a t i c vo id openContext () {
c u r r e n t = new SymbolTable (c u r r e n t) ;

}
/** C lo s e the c u r r e n t c on t e x t . */
pub l i c s t a t i c vo id c l o s eCon t e x t () {

i f (c u r r e n t . e n c l o s i n gEnv i r onmen t != n u l l) {
c u r r e n t = cu r r e n t . e n c l o s i n gEnv i r onmen t ;

}
}
}

50
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53SYNTAX ANALYSIS

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Syntax Analyzer

Uses the tokens produced by the lexical analyzer to create an
intermediate representation

Syntax Tree

A typical representation is a syntax tree:
node: operation in the program

children: parameters of the operation

+

left
operand

right
operand

if

condition then
statements

else
statements

51
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53EXAMPLE OF SYNTAX ANALYSIS

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Syntax Analyzer

position = initial + rate * 60

<id,1><=><id,2><+><id,3><*><number,60>

1 position float ...
2 initial float ...
3 rate float ...

Symbol Table

=

<id,1>

<id,2>

<id,3> <number,60>

+

*

52
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53SEMANTIC ANALYSIS

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Semantic Analyzer

Uses the syntax tree and the information in the symbol table to
check the source program for semantic consistency with the

language definition

Actions

Gathers type information and saves it in either the syntax tree
and the symbol table

Applies coercions, or type conversions

Type Checking

Important part of the semantic analyzer: the compiler checks that
each operator has matching operands

53
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53EXAMPLE OF SEMANTIC ANALYSIS

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Semantic Analyzer

position = initial + rate * 60

<id,1><=><id,2><+><id,3><*><number,60>

1 position float ...
2 initial float ...
3 rate float ...

Symbol Table

=

<id,1>

<id,2>

<id,3> <number,60>

+

*

=

<id,1>

<id,2>

<id,3> inttofloat

+

*

<number,60>

54
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53INTERMEDIATE CODE GENERATOR

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Intermediate Code
Generator

Many compilers generate an explicit low-level or machine-like
intermediate representation, which is a program for an abstract

machine

Intermediate code

Two representations are generally used:
Syntax tree

Three-address code, that is easy to produce, and translate into
the target machine

55
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53WHAT IS THREE-ADDRESS CODE?

A sequence of assembly-like instructions with, at most, three operands per
instruction.

<variable> = <operand1> <operator> <operand2>

Each operand can act like a register

The affectation operator is implicit and always present

Constraints

1 At most one operator on the right side

2 Temporary names are generated to hold the value computed by the three-address
instruction

3 Some instructions have fewer then three operands

56
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53EXAMPLE OF INTERMEDIATE CODE GENERATION

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Intermediate Code
Generator

position = initial + rate * 60

<id,1><=><id,2><+><id,3><*><number,60>

1 position float ...
2 initial float ...
3 rate float ...

Symbol Table

=

<id,1>

<id,2>

<id,3> <number,60>

+

*

=

<id,1>

<id,2>

<id,3> inttofloat

+

*

<number,60>
t1=inttofloat(60)
t2=id3*t1
t3=id2+t2
id1=t3

57
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53MACHINE-INDEPENDENT CODE OPTIMIZER

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Machine-Independent
Code Optimizer

Improves the intermediate code for better target code
(faster, shorter, less power consumer. . .)

All the compilers include a machine-independent code optimizer

Those that spent a large amount of time on this phase are
named “optimizing compilers”

Note

Many of the simple optimizations permit to significantly improve the
running time of the target program without too much time spent on
this phase

58
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53EXAMPLE OF OPTIMIZATION

t1=inttofloat(60)
t2=id3*t1
t3=id2+t2
id1=t3

t1=id3*60.0
id1=id2+t1

t1=60.0
t2=id3*t1
t3=id2+t2
id1=t3

Conversions of constants are
replaced by the results of the
conversions themselves

Registers, when initialized with one
operand on the right side, are
replaced by the right side in the others
instructions

59
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53EXAMPLE OF MACHINE-INDEPENDENT CODE OPTIMIZATION

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Machine-Independent
Code Optimizer

position = initial + rate * 60

<id,1><=><id,2><+><id,3><*><number,60>

1 position float ...
2 initial float ...
3 rate float ...

Symbol Table

=

<id,1>

<id,2>

<id,3> <number,60>

+

*

=

<id,1>

<id,2>

<id,3> inttofloat

+

*

<number,60>
t1=inttofloat(60)
t2=id3*t1
t3=id2+t2
id1=t3

t1=id3*60.0
id1=id2+t1

60
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53CODE GENERATOR

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Code Generator

Maps an intermediate representation to the target language

If the target language is machine code, registers or memory
locations are selected for each variables used by the program

Then, the intermediate instructions are translated into sequences
of machine instructions that perform the same tasks

A crucial aspect is the judicious assignment of registers to hold
variables

61
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53EXAMPLE OF CODE GENERATION

Assumes that R1 and R2 are registers
Variables are mapped to registers so that they can be easily used for the
generation of the next instructions

LDF R2, id3
MULF R2, R2, #60.0

t1=id3*60.0
id1=id2+t1

LDF R1, id2
ADDF R1, R1, R2
STF id1, R1

LDF R2, id3
MULF R2, R2, #60.0
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1

62
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53EXAMPLE OF CODE GENERATION

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Code Generator

position = initial + rate * 60

<id,1><=><id,2><+><id,3><*><number,60>

1 position float ...
2 initial float ...
3 rate float ...

Symbol Table

=

<id,1>

<id,2>

<id,3> <number,60>

+

*

=

<id,1>

<id,2>

<id,3> inttofloat

+

*

<number,60>
t1=inttofloat(60)
t2=id3*t1
t3=id2+t2
id1=t3

t1=id3*60.0
id1=id2+t1

LDF R2,id3
MULF R2,R2,#60.0
LDF R1,id2
ADDF R1,R1,R2
STF id1,R1

63
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53OUTLINE

1 Introduction

2 Programming languages

3 What is a language processor?

4 Process of a compiler

5 Tools to create a compiler

6 Conclusion

64
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53TOOLS TO CREATE A COMPILER

Several tools are available to help the compiler writer to build his/her compiler

1

Scanner generators

Lexical analyzers from a
reg-ex description tokens

(Flex, JFlex. . .)

2

Parser generators

Syntax analyzers from
grammar

(Yacc, JavaCC, Bison. . .)

3

Syntax-directed
translation engines

Parse-tree walkthrough
routines for intermediate code

generation

65
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53TOOLS TO CREATE A COMPILER (CONT.)

4

Code-generator
generators

Procedures for generating
target machine code from

intermediate code

5

Data-flow analysis
engines

Help for management of value
exchange between compiler

components

6

Construction
toolkits

Include the other tools and
IDE integration (Xtext. . .)

66
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53OUTLINE

1 Introduction

2 Programming languages

3 What is a language processor?

4 Process of a compiler

5 Tools to create a compiler

6 Conclusion

67
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53KEY CONCEPTS IN THE CHAPTER

Language Processors: An integrated software development environment:
compilers, interpreters, linkers, loaders, debuggers, profilers.
Compiler Phases: Sequence of phases, each of which transforms the source
program from one intermediate representation to another.
Machine and Assembly Languages: Machine languages were the first-generation
programming languages, followed by assembly languages.
Code Optimization: the science of improving the efficiency of code in both
complex and very important. It is a major portion of the study of compilation.
Higher-Level Languages: Programming languages take on progressively more of
the tasks that formerly were left to the programmer: memory management,
type-consistency. . .
Environments: The association of names with locations in memory and then with
values can be described in terms of environments.
Parameter Passing: Parameters are passed from a calling procedure to the callee
either by value or by reference.

68
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Aliasing: When parameters are (effectively) passed by reference, two formal
parameters can refer to the same object.
Compiler Front End: The part of the compiler that is dedicated to the analysis
phases. The compiler front end takes the source program, breaks it to token,
analyzes the grammar, detects errors and inconsistencies, and generate an
intermediate representation.
Compiler Back End: The part of the compiler that is dedicated to the synthesis
phases. The compiler back end takes the intermediate representation, generates
assembly and machine code.
Lexical Analyzer: The lexical analyzer reads the input one character at a time and
produces as output a stream of tokens. A token consists of a terminal symbol and
attribute values.
Parsing: Parsing is the problem of figuring out how a string of terminals can be
derived from the start symbol of the grammar by repeatedly replacing a
nonterminal by the body of one of its productions.

69
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Parse Tree: A graphical tree representation of the productions that are matching a
sequence of input tokens.

Intermediate Code: The result of the syntax analysis is a representation of the
source program, called intermediate code. Two primary forms of intermediate
code are illustrated: abstract syntax tree (similar to parse tree), and three-address
code.

Symbol Table: A data structure that holds information about identifiers.

70
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53Bibliography of the Chapter

Church, A.
The Calculs of Lambda Conversion.
Princeton University Press, Princeton, N.J.

Firme, J., Valera, N., Canemre, Y., Burchill, S., and Khurshid, B. (2013).
Programming language families.

Frege, G. (1967).
Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought, chapter From Frege to Gödel.
Havard Univ. Press, Cambridge, MA.

Scott, M. (2006).
Programming Language Pragmatics.
Morgan-Kaufmann, Sans Francisco, CA, 2nd edition edition.

Sethi, R. (1996).
Programming Languages: Concepts and Constructs.
Addison-Wesley.

Wexelblat, R. L. (1981).
History of Programming Languages, volume 1.
Academic Press.

71
MEMBRE DEIntroduction Programming languages Language processor Process of a compiler Tools to create a compiler

Conclusion

DA53

Chapter 2
Lexical Analysis

Stéphane GALLAND

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand

6 Conclusion

2
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53OUTLINE

1 Introduction
General principles
Definitions
Separating the lexical analyzer and the parser
Lexical errors

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand

6 Conclusion

3
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53LEXICAL ANALYSER

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Lexical Analyzer

The lexical analyzer reads
source program and extract
lexemes

Each lexeme is associated to
a token:
<token-name,
attribute-value>

Outputs the tokens

4
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53PROCESS OF THE LEXICAL ANALYZER

1
Discovering the tokens

2

Stripping the blanks and
the comments

3

Correlating the error
messages with the source
program (line number
tracking. . .)

Cascading Process (most of the time)

1 Scanning: processes that do not
require tokenization of the input, e.g.
deletion of comments and compaction
of consecutive white spaces

2 Lexical analysing: produces tokens
from the output of the scanner

5
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction
General principles
Definitions
Separating the lexical analyzer and the parser
Lexical errors

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand

6 Conclusion

6
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53LEXEME

Definition

A sequence of characters in the source program that is identified by the lexical analyzer
as a lexical unit (element of the language)

Example

Let the statement: printf (”Total = %dn”, score);

Both printf and score are lexemes

String of characters is a lexeme

Parenthesis, coma and semicolumn characters are also lexemes

7
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53TOKEN

Definition

A pair consisting of a token name and an optional attribute value

name: abstract symbol representing a kind of lexical unit

token names are the input symbols that the parser processes

token name is written in bold-face

Example

Let the statement: printf (”Total = %dn”, score);

both printf and score are lexemes matching the pattern for token id

8
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53PATTERN

Definition

A description of the form that the lexemes of a token may take

For keyword: the pattern is a sequence of characters that form the keyword

For identifier and some other token: the pattern is a more complex structure that
is matched by many strings

Example

Let the statement: printf (”Total = %dn”, score);

both printf and score are described by the pattern [a-zA-Z][a-zA-Z]*
(regex)

9
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53CLASSES OF TOKENS

In many programming languages, the following classes cover most or all of the tokens:

Class Description

keyword Pattern is the name of the token itself

operator Individually or in classes, e.g., class comparison
identifier One token per identifier

constant One token per type of constant, e.g. number or string literal

punctuation One token per punctuation symbol, e.g. left and right parentheses,
comma, and semicolon

10
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53ATTRIBUTE OF TOKEN

Definition

Additional information associated to a token, when more than one lexeme can match a
pattern

Examples

value of the parsed number (lexeme) for token number

position of the identifier into the symbol table for token id

Assumption

Usually, token has at most one associated attribute; but it could be a data structure

11
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction
General principles
Definitions
Separating the lexical analyzer and the parser
Lexical errors

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand

6 Conclusion

12
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53RELATION BETWEEN THE LEXICAL ANALYZER AND THE PARSER

Lexical analyzer generally does not control the execution flow of the compiler

Lexical Analyser
Source

Program

Tokens
Parser or

Syntax Analyzer

Symbol Table

Syntax
Tree

getNextToken

Lexical analyzer is invoked by the parser through a call to getNextToken function
Then, lexical analyzer tries to discover and to reply a token

13
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53WHY SEPARATING LEXICAL ANALYZER AND PARSER?

1

Design Simplicity

Enable simplification of at
least one of these tasks

2

Compiler Efficiency

Enable application of
specialized techniques

3

Easier Portability

Specific input devices
supported by lexical analyzer

14
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction
General principles
Definitions
Separating the lexical analyzer and the parser
Lexical errors

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand

6 Conclusion

15
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53LEXICAL ERRORS

It is hard for a lexical analyzer to tell that there is a source-code error

Example

fi (a == f(x)) ...

Problems

Cannot tell whether fi is a misspelling of the keyword if or an undeclared
function identifier

Fails when none of the patterns for tokens matches any prefix of the remaining
input

If such an error is detected, lexical analyzer must output an error message
and try to recover a stable state

16
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53RECOVERY STRATEGY: PANIC MODE

Successive characters are
deleted from the remaining
input, until the lexical
analyzer can find a
well-formed token at the
beginning of input

17
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OTHER RECOVERY STRATEGIES

Replace character

in input

Transpose

adjacent

characters

Delete character

from input

Insert character

into input

18
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand

6 Conclusion

19
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53READING THE SOURCE PROGRAM

Reading input is key
task that must be
efficient

Have to look one or
more characters
beyond the next
lexeme to extract the
right lexeme

Two-buffer scheme
that handles large
lookaheads safely

Example

To be sure that a character is the last of an identifier, the next character must be read,
and it is not part of the lexeme for id

20
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53PRINCIPLES OF THE TWO-BUFFER SCHEME

Two buffers are read and used alternatively

□ E = M * C 2 eof□ □ □ □ □ * *

1st Buffer of N characters 2nd Buffer of N characters

Assumption: the larger lexeme has a size lower or equals to N
N is usually the size of the disk block
eof character is put in the buffer when there is not enough characters in the input

How to be efficient? By invoking the read system function for N characters rather
than a call per character

21
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53TWO READING POINTERS

□ E = M * C 2 eof□ □ □ □ □ * *

lexemeBegin
forward

lexemeBegin: the beginning of the current lexeme
forward: the current character

Algorithmic Principle

1 If forward is outside a buffer, the other buffer is reloaded from the input, and
move forward to the beginning of the newly loaded buffer

2 If character pointed by forward does not match a lexeme from lexemeBegin:

If is is a valid lexeme, output the lexeme, move lexemeBegin to foward

Else generate an error

3 Else move forward to the right

22
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53BE MORE EFFICIENT WITH SENTINELS

Problem of efficiency

For each character read, two tests:

1 one for the end of the buffer

2 one to determine what character is read (usually with a multiway branch)

⇒ To improve the speed of the treatment, we can combine the two tests by extending
each buffer with a sentinel character (usually eof)

* eof□ E = M * C 2 eof□ □ □ □ □ * *

Sentinels

eof

23
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53CAN WE RUN OUT OF BUFFER SPACE?

In most
modern
languages,
lexemes are
short
N ≥ 1000 is
ample

Character
strings can be
very long
(more than N)

Add a dynamic
buffer scheme
for large
lexeme

Reply a
sequence of str
tokens, one for
each of the
shorter strings
(see example)

Example

Compile-time string concatenation in C: ”ABC” ”DEF”

24
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens
Definitions and operations on languages
Regular expressions
Regular definitions
Recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand

6 Conclusion

25
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens
Definitions and operations on languages
Regular expressions
Regular definitions
Recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand

6 Conclusion

26
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53DEFINITIONS OF ALPHABET, STRING AND LANGUAGE

Alphabet

Any finite set of symbols; Example: A = {a, b, c , δ}

String

A finite sequence s of symbols drawn from an alphabet A.
Example: s ∈ S/S = S(P(A)) \ {∅} = {a, b, c , δ, ab, ac, aδ, . . . }
|s| is the size of s

Language

Any countable set of strings over some fixed alphabet
Example: L ⊆ S = {abc, δ, b, bc}

27
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OPERATIONS ON LANGUAGES

[K
le
en

e,
1
9
5
6
]

The following operations are used for defining the pattern matchings for languages

Union of the languages L and M

L ∪M = {s|s ∈ L ∨ s ∈ M}
Example: Let L = {a, b, c} and M = {d , e}

then L ∪M = {a, b, c , d , e}

Concatenation of the languages L and M

LM = {st|s ∈ L, t ∈ M}
Example: Let L = {a, b, c} and M = {d , e}

then LM = {ad , ae, bd , be, cd , ce}

28
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OPERATIONS ON LANGUAGES (CONT.)

[K
le
en

e,
1
9
5
6
]

Self-concatenation of the language L

Li =

{
{ϵ} if i = 0

Li−1L if i > 0

Example: Let M = {d , e}

then M4 =

dddd , ddde, dded , ddee,

dedd , dede, deed , deee,

eddd , edde, eded , edee,

eedd , eede, eeed , eeee

29
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OPERATIONS ON LANGUAGES (CONT.)

[K
le
en

e,
1
9
5
6
]

Kleene’s Closure of the language L

L∗ =
⋃∞

i=0 L
i

Example: Let M = {d , e}

then M∗ =

{
ϵ,d ,e,dd ,de,ed ,ee,ddd ,dde,ded ,dee,edd ,ede,eed ,

eee,dddd ,ddde,dded ,ddee,dedd ,dede,deed ,deee,...

}

Positive Closure of the language L

L+ =
⋃∞

i=1 L
i

Example: Let M = {d , e}

then M+ =

{
d ,e,dd ,de,ed ,ee,ddd ,dde,ded ,dee,edd ,ede,eed ,

eee,dddd ,ddde,dded ,ddee,dedd ,dede,deed ,...

}

30
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens
Definitions and operations on languages
Regular expressions
Regular definitions
Recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand

6 Conclusion

31
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53REGULAR EXPRESSIONS

[K
le
en

e,
1
9
5
6
,

S
h
a
n
n
o
n
a
n
d
M
cC

ar
th
y,

1
9
5
6
,

A
h
o
,
1
9
9
0
,

A
h
o
et

a
l.
,
1
9
8
8
]

Regular Expressions (shortened as regex, regexp or rational expression)

A sequence of characters that specifies a search pattern.

Usually used for describing all the
languages that can be built from the
operators previously defined

Built recursively out of smaller
regular expressions (see following
slides).

Each regular expression r denotes a
language L(r), which is also defined
recursively from the languages
denoted by r ’s expressions.

32
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53BASIS OF REGULAR EXPRESSIONS

The rules that define the regular expressions over some alphabet Σ and the languages
that those expressions denote are:

Definition (BASIS)

There are two rules that form the basis:

1 ϵ is a regular expression, and L(ϵ) is {ϵ}, that is, the language whose sole member
is the empty string.

2 If a is a symbol in Σ, then a is a regular expression, and L(a) = {a}, that is, the
language with one string, of length one, with a in its position.

Remark

By convention, we use italics for symbols, and boldface for their corresponding regular expressions.

33
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53INDUCTION WITH REGULAR EXPRESSIONS

Definition (INDUCTION)

There are four parts to the induction whereby larger regular expressions are built from
smaller ones. Suppose r and s are regular expressions denoting languages L(r) and
L(s), respectively.

1 (r)|(s) is a regular expression denoting the language L(r) ∪ L(s)

2 (r)(s) is a regular expression denoting the language L(r)L(s)

3 (r)∗ is a regular expression denoting the language (L(r))∗

4 (r) is a regular expression denoting L(r)

This last rule says that we can add additional pairs of parentheses around expressions
without changing the language they denote.

34
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53SIMPLIFICATION CONVENTIONS FOR INDUCTION

Regular expressions often contain unnecessary pairs of parentheses

Simplification Rules

a) The unary operator ”∗” has highest precedence and is left associative.

b) Concatenation has second highest precedence and is left associative.

c) ”|” has lowest precedence and is left associative.

35
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53REGULAR SET

Regular Set

A language that can be defined by a regular expression
If two regular expressions r and s denote the same regular set, they are equivalent r = s

Law Description

r |s = s|r | is commutative

r |(s|t) = (r |s)|t | is associative
r(st) = (rs)t Concatenation is associative

r(s|t) = rs|rt; (s|t)r = st|tr Concatenation distributes over |
ϵr = rϵ = r ϵ is the identity for concatenation

r∗ = (r |ϵ)∗ ϵ is guaranteed in a closure

r ∗ ∗ = r∗ ∗ is idempotent

36
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens
Definitions and operations on languages
Regular expressions
Regular definitions
Recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand

6 Conclusion

37
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53REGULAR DEFINITIONS

For notational convenience, we may wish to give names to certain regular
expressions and use those names in subsequent expressions, as if the names were

themselves symbols

Regular definition

If Σ is an alphabet of basic symbols, a regular definition is a sequence of definitions of
the form:

d1 → r1
d2 → r2

. . .
dn → rn

di is a new symbol, not in and not the same as any other of the d ’s

ri is a regular expression over the alphabet Σ ∪ {d1,d2, . . . ,di-1}.

38
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53WELL-KNOWN REGULAR DEFINITIONS

letter → A|B| . . . |Z |a|b| . . . |z

letter → letter|

digit → 0|1| . . . |9

letters → letter letter∗

digits → digit digit∗

id → letter (letter |digit)∗

optFrac → . digits|ϵ

optExp → ((E |e)(+| − |ϵ)digits)|ϵ

number → digits optFrac optExp

39
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXTENSION OF THE REGULAR DEFINITIONS

[K
le
en

e,
1
9
5
6
]

Since [Kleene, 1956] introduced regular expressions with the basic operators in
1950s, many extensions have been added to enhance their ability to specify string

patterns

1

r+
One or more
instances

L(r+) = (L(r))+

Same precedence and
associativity as ”∗”

2

r?
Zero or one
instance

L(r?) = L(r) ∪ {ϵ}
Same precedence and
associativity as ”∗”

3

[a]
Character classes

[ab. . .z] = a|b| . . . |z
Consecutive symbols: [a− z]

40
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53REVISION OF THE REGULAR DEFINITIONS

letter → [A− Za− z]

letter → [A− Za− z]

digit → [0− 9]

letters → letter+

digits → digit+

id → letter (letter |digit)∗

number → digits(.digits)?([Ee][+−]?digits)?

41
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens
Definitions and operations on languages
Regular expressions
Regular definitions
Recognition of tokens

Definition of the Lexeme-Token Pairs
Transition Diagram
Implementation of a Lexical Analyzer based on Transition Diagrams

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand

6 Conclusion
42

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53DEFINITION OF OUR ILLUSTRATIVE LANGUAGE

We are able to express patterns using regular expressions
How to regex patterns for all the tokens of our language?

term → number
→ id

expr → term = term
→ term <> term
→ term < term
→ term > term
→ term <= term
→ term >= term

statement → if expr then statement else statement
→ term

43
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53DEFINITION OF THE LEXEME-TOKEN PAIRS

Lexeme Regular Expression Token Token Attributes
ws [\n\t\r]+ - -
if if if -
then then then -
else else else -
id letter (letter |digit)∗ id pointer to symbol table’s entry
number digits(. digits)? number pointer to symbol table’s entry
= = relop EQ

<> <> relop NE

< < relop LT

> > relop GT

<= <= relop LE

>= >= relop GE

44
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens
Definitions and operations on languages
Regular expressions
Regular definitions
Recognition of tokens

Definition of the Lexeme-Token Pairs
Transition Diagram
Implementation of a Lexical Analyzer based on Transition Diagrams

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand

6 Conclusion
45

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53TRANSITION DIAGRAM

As an intermediate step in the construction of a lexical analyzer, patterns are
converted to flowcharts, called transition diagrams.

Definition (Transition Diagram)

Diagram: composed of states and edges

State: a step in the scanning of a string, that also indicates if the input stream is
validating the regular expression, or not

Edge: directed from one state to another. Each edge is labeled by a symbol or a
set of symbols

Assumption

All transition diagrams are deterministic: never more than one edge out of a given
state with a given symbol among its labels.

46
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53SPECIFIC NOTATIONS

Notation Explanation

0
start The transition diagram always begins in the start state before any input

symbols have been read.

0 1other The transition labelled with other is traversable when no other transition is
traversable.

2
The accepting state (or final) indicates that a lexeme has been found (between
pointers lexemeBegin and forward).

4
*

If the lexeme does not include the symbol that got us to the accepting state,
it is necessary to retract the forward pointer by one position.

47
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF A TRANSITION DIAGRAM FOR RELOP

0 21

6

3

4

5

7

8

start < =

>
=

>

=

other

other

*

*

<relop,LE>

<relop,NE>

<relop,LT>

<relop,EQ>

<relop,GE>

<relop,GT>

48
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53PROBLEM WITH IDENTIFIERS AND KEYWORDS

The transition diagram that recognizes the identifiers is:

9 1110
start letter other *

<id, lexeme()>

letter or digit

lexeme() replies the current lexeme (between lexemeBegin and forward pointers).

Recognizing keywords and identifiers presents a specific problem: keywords are not
identifiers even though they look like identifiers.

49
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53SOLVING THE PROBLEM WITH IDENTIFIERS AND KEYWORDS

1O Install all the keywords in the symbol table initially
A field of the symbol-table entry indicates that the string are never ordinary
identifier

installID () places the identifier in the symbol table if it is not already
there and returns a pointer to the symbol-table entry.

getToken() replies the token that is corresponding to the lexeme, or id
otherwise.

9 1110
start letter other * <getToken(lexeme()),

 installID(lexeme())>

letter or digit

50
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53SOLVING THE PROBLEM WITH IDENTIFIERS AND KEYWORDS (CONT.)

2O Create a separate transition diagram for each keyword

tokens must be prioritized so that the reserved-word tokens are recognized
in preference to id

Approach less used than the previous approach when the lexical analyzer is
written by hand

51
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens
Definitions and operations on languages
Regular expressions
Regular definitions
Recognition of tokens

Definition of the Lexeme-Token Pairs
Transition Diagram
Implementation of a Lexical Analyzer based on Transition Diagrams

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand

6 Conclusion
52

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53IMPLEMENTATION OF A LEXICAL ANALYZER

There are several ways that a collection of transition diagrams can be used to build
a lexical analyzer

A variable state is holding the number of the current state for a transition
diagram

Each transition diagram is simulated by a piece of code inside a function

The code of a state is itself a switch statement or a multiway branch that
determines the next state by reading and examining the next input character.

53
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF CODE FOR THE TOKEN RELOP

Token ge tRe lop () { /* r e t u r n n u l l on f a i l u r e */
char c ;
i n t s t a t e = 0 ;
Token token = new Token (Tag .RELOP) ;
wh i l e (t rue) { /* r e p e a t u n t i l a r e t u r n or f a i l u r e */

sw i tch (s t a t e) {
case 0 :

c = nextChar () ;
i f (c==’< ’) s t a t e = 1 ;
e l s e i f (c==’=’) s t a t e = 5 ;
e l s e i f (c==’> ’) s t a t e = 6 ;
e l s e r e tu rn n u l l ; /* l exeme i s not a r e l o p */
break ;

case 1 : . . .
case 8 :

r e t r a c t () ; // move back the ” fo rwa rd ” and ” lexemeBeg in ” p o i n t e r s
token . a t t r i b u t e = ”GT” ;
r e t u r n token ;

d e f a u l t : r e t u r n n u l l ;
}

}
}

54
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53COMBINE TRANSITION DIAGRAMS

To build the entire lexical analyzer, the codes for simulating the transition diagrams
may be arranged in different ways

1O Arrange for the transition diagrams for each token to be tried sequentially

When the function is replying null (failure), the pointer forward is reset
and the next transition diagram is started

This approach allows us to use the transition diagrams for the individual
keywords

We have only to use them before we use the diagram for id, in order the
keywords to be reserved words

55
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53COMBINE TRANSITION DIAGRAMS (CONT.)

2O Run the various transition diagrams “in parallel”

Caution: be careful to resolve the case where one diagram finds a lexeme
that matches its pattern, while one or more other diagrams are still able to
process input

Strategy: take the longest prefix of the input that matches any pattern

56
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53COMBINE TRANSITION DIAGRAMS (CONT.)

3O Preferred approach: combine all the transition diagrams in one

Transition diagram reads input until there is no possible next state

Then, longest lexeme that matched any pattern is replied

The problem of combining transition diagrams for several tokens is complex.
The easiest way to solve this problem is to study how lexical-analyzer generators,

such as Lex or Flex, are working

57
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC
Lex Generator
Java generators

5 Writing a lexical analyzer by hand

6 Conclusion

58
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53GENERATORS OF LEXICAL ANALYSER

[L
es
k
,
1
9
7
5
]

Several tools allow to generate a lexical analyzer by specifying regular expressions to
describe the patterns for the tokens

This section introduces the tool:

Lex, and its more recent implementation Flex (dedicated to compilers written in C or
C++)
JavaCC (dedicated to compilers written in Java)

The input notation is the Lex language

Transition
Diagram

Generator

Lex Program:

file.l

Transition

Diagram

Code
Generator

C Program:

file.yy.c

59
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC
Lex Generator

Use of Lex
Lex program

Java generators

5 Writing a lexical analyzer by hand

6 Conclusion

60
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53PROCESS OF LEX

Lex Program:

file.l

Lex
Compiler

C Program:

file.yy.c

C Program: file.yy.c

C Program: main.c

C
Compiler

Executable:

a.out

Input Stream
a.out

Sequence

of tokens

61
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53KEY POINTS TO IMPLEMENT MAIN.C

The lexical analyzer is a C function that returns an integer, which is a code for
one of the possible token names

This subroutine is called by the parser

Attribute value (another numeric code) is a pointer to the symbol table, or nothing

This value is placed in a global variable yylval

62
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53STRUCTURE OF A LEX PROGRAM

A Lex program has the following form:

D e c l a r a t i o n s
%%
Tr a n s l a t i o n r u l e s
%%
Au x i l i a r y f u n c t i o n s

Declarations

Declarations of variables (in C)

Manifest constants: identifiers declared to stand for a constant, eg. the name of a
token

Regular definitions

63
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53STRUCTURE OF A LEX PROGRAM

A Lex program has the following form:

D e c l a r a t i o n s
%%
Tr a n s l a t i o n r u l e s
%%
Au x i l i a r y f u n c t i o n s

Translation rules

Have the form:

Pattern { Actions }
Pattern is a regex

Actions are fragments of C code

Evaluation order: first matching rule, first used

63
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53STRUCTURE OF A LEX PROGRAM

A Lex program has the following form:

D e c l a r a t i o n s
%%
Tr a n s l a t i o n r u l e s
%%
Au x i l i a r y f u n c t i o n s

Auxiliary functions

Holds whatever additional functions are used in the actions

63
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF A LEX PROGRAM: DECLARATIONS

%{
/* d e f i n i t i o n s o f man i f e s t con s t an t s , i f not a l r e a d y

d e c l a r e d i n the p a r s e r f i l e s (yacc) */
enum { LT , LE , EQ, NE, GT, GE } Re lop Id ;
enum { IF , THEN, ELSE , ID , NUMBER, RELOP } TokenName ;

%}

/* r e g u l a r e x p r e s s i o n s */
de l im [\ t \n]
ws { de l im}+
l e t t e r [A=Za=z]
d i g i t [0=9]
i d { l e t t e r }({ l e t t e r } |{ d i g i t }) *
number { d i g i t }+(\ .{ d i g i t }+) ? ([Ee][+=]?{ d i g i t }+)?

%%

64
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF A LEX PROGRAM: TRANSLATION RULES

{ws} { /* no a c t i o n and no r e t u r n */ }
i f { r e t u r n IF ; }
then { r e t u r n THEN; }
e l s e { r e t u r n ELSE ; }
{ i d } { y y l v a l = (i n t) i n s t a l l I D () ; r e t u r n ID ; }
{number} { y y l v a l = (i n t) i n s t a l lNumbe r () ; r e t u r n NUMBER; }
”<” { y y l v a l = LT ; r e t u r n RELOP; }
”<=” { y y l v a l = LE ; r e t u r n RELOP; }
”=” { y y l v a l = EQ; r e t u r n RELOP; }
”<>” { y y l v a l = NE; r e t u r n RELOP; }
”>” { y y l v a l = GT; r e t u r n RELOP; }
”>=” { y y l v a l = GE ; r e t u r n RELOP; }

%%

65
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF A LEX PROGRAM: AUXILIARY FUNCTIONS

i n t i n s t a l l I D () {
/* f u n c t i o n to i n s t a l l the lexeme , whose f i r s t

c h a r a c t e r i s po i n t ed to by yy t ex t , and whose
l e n g t h i s yy l eng , i n t o the symbol t a b l e and
r e t u r n a p o i n t e r t h e r e t o */

}

i n t i n s t a l lNumbe r () {
/* s i m i l a r to i n s t a l l I D , but put s nume r i c a l .

Cons tan t s i n t o a s e p a r a t e t a b l e */
}

66
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53CONFLICT RESOLUTION WITH LEX

Two rules are used by Lex to decide on the proper lexeme to select, when several
prefixes of the input match one or more patterns

R1

Longuest Lexeme

Always prefer a longer prefix
to a shorter prefix

R2

First in Lex

If the longest possible prefix
matches two or more patterns,
prefer the pattern listed first

67
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53LOOKAHEAD OPERATOR

Lex automatically reads one character ahead of the last character that forms the
selected lexeme, and then retracts the input so only the lexeme itself is consumed
from the input

Problem: Sometimes, we want a certain pattern to be matched to the input only
when it is followed by a certain other characters

Solution: use the character ”/ ” in the pattern to indicate the end of the part of
the pattern that matches the lexeme

a / b means “a followed by b” (a and b are regular expressions)
The additional pattern (b) is not consumed from the input in the lexical analyzer
point-of-view

68
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC
Lex Generator
Java generators

5 Writing a lexical analyzer by hand

6 Conclusion

69
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53JLEX

Several implementations of lexical-analyzer generators provides Java source code

JLex is a lexical analyzer generator, written for Java, in Java

JLex is based upon the Lex lexical analyzer generator model ⇒ the input file is
the similar as the one for Lex, but not the same

User code
%%
JLex d i r e c t i v e s
%%
Tr a n s l a t i o n r u l e s

http://www.cs.princeton.edu/~appel/modern/java/JLex/

70
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

http://www.cs.princeton.edu/~appel/modern/java/JLex/

DA53JLEX PROGRAM

User code: copied verbatim into the lexical analyzer source file

JLex directives: explained in the online documentation

Translation rules: series of rules for breaking the input stream into tokens
Each rule has three distinct parts: the optional state list, the regular expression,
and the associated action:

[<states>] <expression> { <action> }

User code
%%
JLex d i r e c t i v e s
%%
Tr a n s l a t i o n r u l e s

71
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53JLEX → JFLEX

JFLex is a lexical analyzer generator, written for Java, in Java

It is a rewrite of JLex with extended features (as for Flex/Lex implementations)

http://www.jflex.de

72
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

http://www.jflex.de

DA53JAVACC

Java Compiler Compiler (JavaCC) is one of the most popular parser generators for
Java applications

Even if JavaCC is a parser, it includes a lexical analyzer in a transparent way

Regex, strings, and the grammar specifications (the BNF) are both written
together in the same file

JavaCC is detailed in Chapter 3

http://javacc.java.net

73
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

http://javacc.java.net

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand
Finite automata
Building a Lexical Analyzer

6 Conclusion

74
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53LEXICAL ANALYZER BY HAND

[A
h
o
,
1
9
9
0
,
H
o
p
cr
o
ft

et
a
l.
,
2
0
0
6
]

To go deeper in how a program like Lex turns its input program into a lexical analyzer,
the formalism called “finite automata” is at the heart of this transition

75
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand
Finite automata
Building a Lexical Analyzer

6 Conclusion

76
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53FINITE AUTOMATA

[M
cC

u
ll
o
u
g
h
a
n
d
P
it
ts
,
1
9
4
3
]

Finite Automaton

Finite automaton is recognizer: it says “yes” or “no” about each possible input string

Deterministic finite automaton - DFA

DFA has, for each state, and for each
symbol of its input alphabet exactly one
edge with that symbol leaving that state

Nondeterministic finite automaton - NFA

NFA have no restrictions on the labels of
their edges

DFA and NFA are represented by transition graphes

Similar to transition diagram, except the same label can be on edges from one
state, and an edge may be labeled by ϵ

77
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand
Finite automata

Nondeterministic finite automata
Deterministic finite automata
From regular expression to NFA
From NFA to DFA

Building a Lexical Analyzer

6 Conclusion

78
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53NONDETERMINISTIC FINITE AUTOMATA

A nondeterministic finite automaton (NFA) is defined by:

⟨S ,Σ,move, s0,F ⟩

1 Finite set of states S

2 Set of input symbols Σ, the input alphabet, ϵ /∈ Σ and Σ+ = Σ ∪ {ϵ}

3 Transition function move: S × Σ+ → PS , gives from a state and symbol pair the
next states

4 Initial state s0 ∈ S that is the start state or initial state

5 Set of states F ⊆ S that are the accepting states or final states

79
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF A NFA

The regular expression “(a|b) ∗ abb” is described by the following NFA:

0 32
start a b

b

1
b

a

S = {0, 1, 2, 3}
Σ = {a, b}
s0 = 0

F = {3}

move =

S Σ+ S ′

0 a 0 or 1
0 b 0
1 b 2
2 b 3

80
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53ALGORITHM FOR EXECUTING A NFA

[H
u
ff
m
a
n
,
1
9
5
4
,
M
o
or
e,

1
9
5
6
,
T
h
o
m
p
so
n
,
1
9
6
8
]

Inputs : An input string x terminated by eof character. A
NFA N with start state s0, accepting states F ,
and transition function move

Output : Answer “yes” if N accepts x; “no” otherwise
Behavior : The algorithm keeps a set of current states S ,

those that are reached from s0 following a path
labeled by the inputs read so far. If c is the next
input character, read by the function nextChar,
then we first compute move (S ,c) and then close
that set using ϵ-closure

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Operation Description

ϵ-closure(s) States reachable
from state s on ϵ-
transitions

ϵ-closure(T) States reachable
from ∀s ∈ T on
ϵ-transitions

81
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0}
foward: abababb

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0}
c = a

foward: bababb

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0}
c = a

move({0}, a) = {0, 1}
ϵ-closure({0, 1}) = {0, 1}
S ′ = {0, 1}

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0, 1}
c = b

foward: ababb

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0, 1}
c = b

move({0, 1}, b) = {0, 2}
ϵ-closure({0, 2}) = {0, 2}
S ′ = {0, 2}

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0, 2}
c = a

foward: babb

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0, 2}
c = a

move({0, 2}, a) = {0}
ϵ-closure({0}) = {0}
S ′ = {0}

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0}
c = b

foward: abb

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0}
c = b

move({0}, b) = {0}
ϵ-closure({0}) = {0}
S ′ = {0}

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0}
c = a

foward: bb

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0}
c = a

move({0}, a) = {0, 1}
ϵ-closure({0, 1}) = {0, 1}
S ′ = {0, 1}

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0, 1}
c = b

foward: b

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0, 1}
c = b

move({0, 1}, b) = {0, 2}
ϵ-closure({0, 2}) = {0, 2}
S ′ = {0, 2}

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0, 2}
c = b

foward: eof

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0, 2}
c = b

move({0, 2}, b) = {0, 3}
ϵ-closure({0, 3}) = {0, 3}
S ′ = {0, 3}

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0, 3}
c = eof

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA SIMULATION

Let the input: ”abababb”

0 32
start a b

b

1
b

a

begin
S ← ϵ-closure (s0);
c ← nextChar;
while c ̸= eof do

S ← ϵ-closure (move (S ,c));
c ← nextChar;

end
return S ∩ F ̸= ∅;

end

Example

S = {0, 3}
F = {3}
S ∩ F = {0, 3} ∩ {3} = {3}
Return “true”

82
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand
Finite automata

Nondeterministic finite automata
Deterministic finite automata
From regular expression to NFA
From NFA to DFA

Building a Lexical Analyzer

6 Conclusion

83
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53DETERMINISTIC FINITE AUTOMATA

Deterministic Finite Automaton

A special case of an NFA where:

1 There are no moves on input ϵ

2 For each state s and input symbol a, there is exactly one edge out of s labeled
with a

While the NFA is used to recognize the strings of a language, the DFA is a simple
and concrete algorithm for recognizing strings
Every regular expression and every NFA can be converted to a DFA accepting the
same language

Lexical analyzers are built upon DFA

84
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF A DFA

The regular expression “(a|b) ∗ abb” is described by the following DFA:

a

0 32
start a b

b

1
a

b

a

b

S = {0, 1, 2, 3}
Σ = {a, b}
s0 = 0

F = {3}

move =

S Σ+ S′

0 a 1
0 b 0
1 a 1
1 b 2
2 a 1
2 b 3
3 a 1
3 b 0

85
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53ALGORITHM FOR EXECUTING A DFA

Inputs : An input string x terminated by eof character. A DFA D with start
state s0, accepting states F , and transition function move.

Output : Answer “yes” if D accepts x; “no” otherwise.
Behavior: Apply algorithm on x. The function move (s,c) gives the state to which

there is an edge from state s on input c . The function nextChar

returns the next character of the input string x

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

86
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 0
foward: abababb

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 0
c = a

foward: bababb

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 0
c = a

move(0, a) = 1
s ′ = 1

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 1
c = b

foward: ababb

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 1
c = b

move(1, b) = 2
s ′ = 2

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 2
c = a

foward: babb

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 2
c = a

move(2, a) = 1
s ′ = 1

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 1
c = b

foward: abb

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 1
c = b

move(1, b) = 2
s ′ = 2

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 2
c = a

foward: bb

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 2
c = a

move(2, a) = 1
s ′ = 1

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 1
c = b

foward: b

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 1
c = b

move(1, b) = 2
s ′ = 2

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 2
c = b

foward: eof

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 2
c = b

move(2, b) = 3
s ′ = 3

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 3
c = eof

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF DFA SIMULATION

Let the input: ”abababb”

a

0 32
start a b

b

1
a

b

a

b

begin
s ← s0;
c ← nextChar;
while c ̸= eof do

s ← move (s,c);
c ← nextChar;

end
return s ∈ F ;

end

Example

s = 3
F = {3}
Return “true”

87
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand
Finite automata

Nondeterministic finite automata
Deterministic finite automata
From regular expression to NFA
From NFA to DFA

Building a Lexical Analyzer

6 Conclusion

88
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53REGEX → NFA: ALGORITHM OF MCNAUGHTON-YAMADA-THOMPSON

[M
cN

a
u
g
h
to
n
a
n
d
Y
a
m
a
d
a
,
1
9
6
0
,
A
h
o
et

a
l.
,
1
9
8
8
,
T
h
o
m
p
so
n
,
1
9
6
8
]

Input : Regex r over alphabet S
Output : NFA N accepting L(r)
Behavior: Begin by parsing r into its constituent subexpressions. The rules for

constructing an NFA consist of basis rules for handling subexpressions
with no operators, and inductive rules for a constructing larger NFA
from the NFAs for the immediate subexpressions of a given expression

Basis 1 : For each ϵ in r , construct the following NFA: start fi

Basis 2 : For any subexpression a in Σ, construct the following NFA:
start

fi
a

Note that in both of the basis constructions, we construct a distinct NFA, with new
states, for every occurrence of ϵ or some a as a subexpression of r

89
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53REGEX → NFA: ALGORITHM OF MCNAUGHTON-YAMADA-THOMPSON (CONT.)

[M
cN

a
u
g
h
to
n
a
n
d
Y
a
m
a
d
a
,
1
9
6
0
,
A
h
o
et

a
l.
,
1
9
8
8
,
T
h
o
m
p
so
n
,
1
9
6
8
]

Induction 1: Suppose r = s|t. Then N(r) is: start fi

N(t)

N(s)

Induction 2: Suppose r = st. Then N(r) is: start i fN(t)N(s)

Induction 3: Suppose r = s∗. Then N(r) is: start fi N(s)

Induction 4: Suppose r = (s). Then N(r) = N(s)

90
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF CONVERSION OF (a|b) ∗ abb

a

r
1

b

r
2

|

r
3

()

r
4

r
5

*

r
7

r
6

a

r
9

r
8

b

r
11

r
10

b

91
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF CONVERSION OF (a|b) ∗ abb

a

r
1

b

r
2

|

r
3

()

r
4

r
5

*

r
7

r
6

a

r
9

r
8

b

r
11

r
10

b

start
21

a

r
1

r
2

start
43

b

91
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF CONVERSION OF (a|b) ∗ abb

a

r
1

b

r
2

|

r
3

()

r
4

r
5

*

r
7

r
6

a

r
9

r
8

b

r
11

r
10

b

start

1
a

3
b

5 6

4

2

r
3

r
4

91
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF CONVERSION OF (a|b) ∗ abb

a

r
1

b

r
2

|

r
3

()

r
4

r
5

*

r
7

r
6

a

r
9

r
8

b

r
11

r
10

b

8

r
5

etc.

1
a

3
b

5

4

2

start
7 6

91
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand
Finite automata

Nondeterministic finite automata
Deterministic finite automata
From regular expression to NFA
From NFA to DFA

Building a Lexical Analyzer

6 Conclusion

92
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53CONVERTING NFA TO DFA

Each state of the constructed DFA
corresponds to a set of NFA states

Number of DFA states may be
exponential
⇒ Difficulties to implement the DFA

The conversion algorithm is described on the following slides

93
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53ALGORITHM FOR CONVERTING NFA TO DFA

Input : NFA N
Output : DFA D accepting the same language as N
Behavior:

1 Algorithm constructs a transition table Dtran from D. Each state of D is a set of
NFA states, and we construct Dtran so that D will simulate “in parallel” all the
possible moves N can make on a given input string

2 NDA may be built from the table Dtran

94
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53BUILDING THE TABLE Dtran

begin
T ← ϵ-closure (s0);
Dstates ← {T};
Unmarked ← {T};
while ∃T ∈ Umarked do

Unmarked ← Unmarked \ {T};
foreach input symbol a do

U ← ϵ-closure (move (T ,a));
if U ̸∈ DStates then

Dstates ← Dstates ∪ {U};
Unmarked ← Umarked ∪ {U};

end
Dtran[T , a] ← U;

end

end

end
95

MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand
Conclusion

DA53EXAMPLE OF THE BUILDING OF Dtran

Let consider the NFA for the regular expression (a|b) ∗ abb.

111098

1
a

3
b

5

4

2

start
7 6

b ba

Label Dstates ∈ Unmarked "a" "b"

A {1, 3, 5, 7, 8} ×

Notes

T = ϵ-closure(s0) = ϵ-closure(7) = {1, 3, 5, 7, 8}

96
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF THE BUILDING OF Dtran

Let consider the NFA for the regular expression (a|b) ∗ abb.

111098

1
a

3
b

5

4

2

start
7 6

b ba

Label Dstates ∈ Unmarked "a" "b"

A {1, 3, 5, 7, 8} B
B {1, 2, 3, 5, 6, 8, 9} ×

Notes

T = {1, 3, 5, 7, 8} and unmark T
a = "a"

U = ϵ-closure(move(T , a)) = ϵ-closure({2, 9}) = {1, 2, 3, 5, 6, 8, 9}
U is a new state (B), and Dtran[T , a] =B

96
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF THE BUILDING OF Dtran

Let consider the NFA for the regular expression (a|b) ∗ abb.

111098

1
a

3
b

5

4

2

start
7 6

b ba

Label Dstates ∈ Unmarked "a" "b"

A {1, 3, 5, 7, 8} B C
B {1, 2, 3, 5, 6, 8, 9} ×
C {1, 3, 4, 5, 6, 8} ×

Notes

T = {1, 3, 5, 7, 8}
a = "b"

U = ϵ-closure(move(T , a)) = ϵ-closure({4}) = {1, 3, 4, 5, 6, 8}
U is a new state (C), and Dtran[T , a] =C

96
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF THE BUILDING OF Dtran

Let consider the NFA for the regular expression (a|b) ∗ abb.

111098

1
a

3
b

5

4

2

start
7 6

b ba

Label Dstates ∈ Unmarked "a" "b"

A {1, 3, 5, 7, 8} B C
B {1, 2, 3, 5, 6, 8, 9} B
C {1, 3, 4, 5, 6, 8} ×

×

Notes

T = {1, 2, 3, 5, 6, 8, 9} and unmark T
a = "a"

U = ϵ-closure(move(T , a)) = ϵ-closure({2, 9}) = {1, 2, 3, 5, 6, 8, 9}
U is B, Dtran[T , a] =B

96
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF THE BUILDING OF Dtran

Let consider the NFA for the regular expression (a|b) ∗ abb.

111098

1
a

3
b

5

4

2

start
7 6

b ba

Label Dstates ∈ Unmarked "a" "b"

A {1, 3, 5, 7, 8} B C
B {1, 2, 3, 5, 6, 8, 9} B D
C {1, 3, 4, 5, 6, 8} ×
D {1, 3, 4, 5, 6, 8, 10} ×

Notes

T = {1, 2, 3, 5, 6, 8, 9}
a = "b"

U = ϵ-closure(move(T , a)) = ϵ-closure({4, 10}) = {1, 3, 4, 5, 6, 8, 10}
U is a new state (D), Dtran[T , a] =D

96
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF THE BUILDING OF Dtran

Let consider the NFA for the regular expression (a|b) ∗ abb.

111098

1
a

3
b

5

4

2

start
7 6

b ba

Label Dstates ∈ Unmarked "a" "b"

A {1, 3, 5, 7, 8} B C
B {1, 2, 3, 5, 6, 8, 9} B D
C {1, 3, 4, 5, 6, 8} B
D {1, 3, 4, 5, 6, 8, 10} ×

Notes

T = {1, 3, 4, 5, 6, 8} and unmark T
a = "a"

U = ϵ-closure(move(T , a)) = ϵ-closure({2, 9}) = {1, 2, 3, 5, 6, 8, 9}
U is B, Dtran[T , a] =B

96
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF THE BUILDING OF Dtran

Let consider the NFA for the regular expression (a|b) ∗ abb.

111098

1
a

3
b

5

4

2

start
7 6

b ba

Label Dstates ∈ Unmarked "a" "b"

A {1, 3, 5, 7, 8} B C
B {1, 2, 3, 5, 6, 8, 9} B D
C {1, 3, 4, 5, 6, 8} B C
D {1, 3, 4, 5, 6, 8, 10} ×

Notes

T = {1, 3, 4, 5, 6, 8}
a = "b"

U = ϵ-closure(move(T , a)) = ϵ-closure({4}) = {1, 3, 4, 5, 6, 8}
U is C, Dtran[T , a] =C

96
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF THE BUILDING OF Dtran

Let consider the NFA for the regular expression (a|b) ∗ abb.

111098

1
a

3
b

5

4

2

start
7 6

b ba

Label Dstates ∈ Unmarked "a" "b"

A {1, 3, 5, 7, 8} B C
B {1, 2, 3, 5, 6, 8, 9} B D
C {1, 3, 4, 5, 6, 8} B C
D {1, 3, 4, 5, 6, 8, 10} × B

Notes

T = {1, 3, 4, 5, 6, 8, 10} and unmark T
a = "a"

U = ϵ-closure(move(T , a)) = ϵ-closure({2, 9}) = {1, 2, 3, 5, 6, 8, 9}
U is B, Dtran[T , a] =B

96
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF THE BUILDING OF Dtran

Let consider the NFA for the regular expression (a|b) ∗ abb.

111098

1
a

3
b

5

4

2

start
7 6

b ba

Label Dstates ∈ Unmarked "a" "b"

A {1, 3, 5, 7, 8} B C
B {1, 2, 3, 5, 6, 8, 9} B D
C {1, 3, 4, 5, 6, 8} B C
D {1, 3, 4, 5, 6, 8, 10} B E
E {1, 3, 4, 5, 6, 8, 11} ×

Notes

T = {1, 3, 4, 5, 6, 8, 10}
a = "b"

U = ϵ-closure(move(T , a)) = ϵ-closure({4, 11}) = {1, 3, 4, 5, 6, 8, 11}
U is a new state (E), Dtran[T , a] =E

96
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF THE BUILDING OF Dtran

Let consider the NFA for the regular expression (a|b) ∗ abb.

111098

1
a

3
b

5

4

2

start
7 6

b ba

Label Dstates ∈ Unmarked "a" "b"

A {1, 3, 5, 7, 8} B C
B {1, 2, 3, 5, 6, 8, 9} B D
C {1, 3, 4, 5, 6, 8} B C
D {1, 3, 4, 5, 6, 8, 10} B E
E {1, 3, 4, 5, 6, 8, 11} B

Notes

T = {1, 3, 4, 5, 6, 8, 11} and unmark T
a = "a"

U = ϵ-closure(move(T , a)) = ϵ-closure({2, 9}) = {1, 2, 3, 5, 6, 8, 9}
U is B, Dtran[T , a] =B

96
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF THE BUILDING OF Dtran

Let consider the NFA for the regular expression (a|b) ∗ abb.

111098

1
a

3
b

5

4

2

start
7 6

b ba

Label Dstates ∈ Unmarked "a" "b"

A {1, 3, 5, 7, 8} B C
B {1, 2, 3, 5, 6, 8, 9} B D
C {1, 3, 4, 5, 6, 8} B C
D {1, 3, 4, 5, 6, 8, 10} B E
E {1, 3, 4, 5, 6, 8, 11} B C

Notes

T = {1, 3, 4, 5, 6, 8, 11}
a = "b"

U = ϵ-closure(move(T , a)) = ϵ-closure({4}) = {1, 3, 4, 5, 6, 8}
U is C, Dtran[T , a] =C

96
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53BUILDING THE DFA FROM THE TABLE Dtran

Label Dstates Init. Final "a" "b"

A {1, 3, 5, 7, 8} yes ∅ B C
B {1, 2, 3, 5, 6, 8, 9} no ∅ B D
C {1, 3, 4, 5, 6, 8} no ∅ B C
D {1, 3, 4, 5, 6, 8, 10} no ∅ B E
E {1, 3, 4, 5, 6, 8, 11} no {11} B C

E

C

BA
a

D

b

start b b

b

b

a

a
a

a

97
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand
Finite automata
Building a Lexical Analyzer

6 Conclusion

98
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand
Finite automata
Building a Lexical Analyzer

Pattern matching with NFA
Pattern matching with DFA

6 Conclusion

99
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53BUILDING LEXICAL ANALYZER WITH NFA

Automaton based on NFA

Each regular-expression pattern is converted to an NFA

Single global automaton combines all the NFA’s in one

Example

a { do Act i on1 () ; }
abb { do Act i on2 () ; }
a*b+ { do Act i on3 () ; }

100
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF THE NFA AUTOMATON

3 65
a b

4
b

1 2
a

b
7 8

b

a

101
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53RUNNING THE NFA AUTOMATON

Lexical analyzer reads the input from
lexemeBegin

NFA is evaluated according to the
input pointed by the forward
pointer

When the NFA simulation does not find any more state, we could find the longest
validated lexeme:

Look backwards in the sequence of sets of states, until accepting states were found

If found accepting states, replies the associated lexeme

Otherwise, there is a syntax error

102
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA EXECUTION

Let consider the input: aaba

3 65
a b

4
b

1 2
a

b
7 8

b

a

0
start

a

abb
a*b+

0

1

3

7

Initially, the set of states contains the ϵ-closure of the state 0.

103
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA EXECUTION

Let consider the input: aaba

3 65
a b

4
b

1 2
a

b
7 8

b

a

0
start

a

abb
a*b+

0

1

3

7

2

4

7

a

a

Read "a"
States: ϵ-closure(move({0, 1, 3, 7}, "a"))= {2, 4, 7}
State 2 is a final state ⇒ lexeme detected for pattern a

103
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA EXECUTION

Let consider the input: aaba

3 65
a b

4
b

1 2
a

b
7 8

b

a

0
start

a

abb
a*b+

0

1

3

7

2

4

7

a

a 7a

Read "a"
States: ϵ-closure(move({2, 4, 7}, "a"))= {7}

103
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA EXECUTION

Let consider the input: aaba

3 65
a b

4
b

1 2
a

b
7 8

b

a

0
start

a

abb
a*b+

0

1

3

7

2

4

7

a

a 7a 8b

a*b+

Read "b"
States: ϵ-closure(move({7}, "b"))= {8}
State 8 is a final state ⇒ lexeme detected for pattern a ∗ b+

103
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA EXECUTION

Let consider the input: aaba

3 65
a b

4
b

1 2
a

b
7 8

b

a

0
start

a

abb
a*b+

0

1

3

7

2

4

7

a

a 7a 8b

a*b+

none
a

Read "a"
States: ϵ-closure(move({8}, "a"))= ∅
Simulation is done. Look backward.

103
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF NFA EXECUTION

Let consider the input: aaba

3 65
a b

4
b

1 2
a

b
7 8

b

a

0
start

a

abb
a*b+

Longuest lexeme: "aab"
Matching pattern: a*b+
Execute do_Action3()

0

1

3

7

2

4

7

a

a 7a 8b

a*b+

none
a

103
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand
Finite automata
Building a Lexical Analyzer

Pattern matching with NFA
Pattern matching with DFA

6 Conclusion

104
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53BUILDING LEXICAL ANALYZER WITH DFA

Automaton based on DFA

Each regular-expression pattern is converted to an DFA (directly or via a NFA)

For each DFA state, if there is one accepting NFA state, use the first pattern in
the Lex program associated to the NFA states

Example

a { do Act i on1 () ; }
abb { do Act i on2 () ; }
a*b+ { do Act i on3 () ; }

105
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF THE DFA AUTOMATON

68

a

b

0137 247

7

8

start

58

b

b

bb
b

aa

a

abb a*b+a*b+

Note

Both states 6 and 8 are final states for patterns “abb” and “a ∗ b+”, resp
Only the first in the Lex program is considered by the NDA

106
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53RUNNING THE DFA AUTOMATON

Lexical
analyzer
reads the
input from
lexemeBegin

DFA is
evaluated
according
to the
input
pointed by
the
forward

pointer

Run until
no next
state or
next state
is ∅

Go back
through
the
sequence
of states

When DFA
state is
encountered,
positive
stop

107
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF SIMULATION OF DFA

Let consider the input: aaba

68

a

b

0137 247

7

8

start

58

b

b

bb
b

aa

a

abb a*b+a*b+

0137

Initially, the selected state is (0137)

108
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF SIMULATION OF DFA

Let consider the input: aaba

68

a

b

0137 247

7

8

start

58

b

b

bb
b

aa

a

abb a*b+a*b+

0137 247
a

a

Read "a"
Pass the edge of the DFA, and update the current state
Because the state 2 is a final state in the NFA, the state
(247) is marked

108
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF SIMULATION OF DFA

Let consider the input: aaba

68

a

b

0137 247

7

8

start

58

b

b

bb
b

aa

a

abb a*b+a*b+

0137 247
a

a

7
a

Read "a", and pass the edge

108
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF SIMULATION OF DFA

Let consider the input: aaba

68

a

b

0137 247

7

8

start

58

b

b

bb
b

aa

a

abb a*b+a*b+

0137 247
a

a

7
a

a*b+

8
b

Read "b"
Pass the edge of the DFA, and update the current state
Because the state 8 is a final state in the NFA, the state (8) is marked

108
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF SIMULATION OF DFA

Let consider the input: aaba

68

a

b

0137 247

7

8

start

58

b

b

bb
b

aa

a

abb a*b+a*b+

0137 247
a

a

7
a

a*b+

8
b

none
a

Read "a"
No state is accessible
Simulation is done. Look backward

108
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53EXAMPLE OF SIMULATION OF DFA

Let consider the input: aaba

68

a

b

0137 247

7

8

start

58

b

b

bb
b

aa

a

abb a*b+a*b+

Longuest lexeme: "aab"
Matching pattern: a*b+
Execute do_Action3()

0137 247
a

a

7
a

a*b+

8
b

none
a

108
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53OUTLINE

1 Introduction

2 Input buffering

3 Specification and recognition of tokens

4 Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC

5 Writing a lexical analyzer by hand

6 Conclusion

109
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53KEY CONCEPTS IN THE CHAPTER

Tokens: The lexical analyzer scans the source program and produces as output a
sequence of tokens, which are normally passed, one at a time to the parser.

Lexemes: Each time the lexical analyzer returns a token to the parser, is has an
associated lexeme: the sequence of characters that the token represents.

Buffering: Because it is often necessary to scan ahead on the input in order to see
where the next lexeme ends, it is necessary for the lexical analyzer to buffer the
input.

Patterns: Each token has a pattern that describes which sequences of characters
can form the lexemes corresponding to that token.

Regular Expressions: These expressions are commonly used to describe patterns.
Regular expressions are built from single characters, using union, concatenation,
and the Kleene closure.

110
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Transition Diagram: The behavior of a lexical analyzer can be described with a
transition diagram. The states of that diagram represent the history of the
characters seen during the analysis. The edges between the states indicate the
possible next characters.

Finite Automata: These are a formalization of transition diagrams. Accepting
states indicates that a lexeme for a token has been found. Unlike transition
diagrams, finite automata can make transitions on empty input as well as on input
characters.

Deterministic Finite Automata: A DFA is a special kind of finite automata that
has exactly one transition out from each state for each input symbol.

Nondeterministic Finite Automata: Automata that are not DFA are called
nondeterministic.

111
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Conversion Among Pattern Representations: It is possible to convert any regular
expression to NFA, and to convert any NFA to DFA.

Lex: Family of software systems that are able to generate lexical analyzers from
input specifications.

112
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53Bibliography of the Chapter (#1)

Aho, A. (1990).
Algorithms for finding patterns in strings.
Handbook of Theoretical Computer Science, A.

Aho, A., Kernighan, W., and Weinberger, P. (1988).
The AWK Programming Language.
Addison-Wesley, Boston, MA.

Hopcroft, J., Motwani, R., and Ullman, J. (2006).
Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Boston, MA.

Huffman, D. (1954).
The synthesis of sequential machines.
J. Franklin Inst., 257:3–4, 161, 190, 375–303.

Kleene, S. (1956).
Representation of events in nerve nets, pages 3–40.
In [Shannon and McCarthy, 1956].

Lesk, M. (1975).
Lex - a lexical analyzer generator.
Computing Science Tech. Report 39, Bell Laboratories, Murray Hill, NJ.

McCullough, W. and Pitts, W. (1943).
A logical calculus of the ideas immanent in nervous activity.
Bull. Math. Biophysics, 5:115–133.

113
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53Bibliography of the Chapter (#2)

McNaughton, R. and Yamada, H. (1960).
Regular expressions and state graphs for automata.
IRETrans. on Electronic Computers, 1(1):38–47.

Moore, E. (1956).
Gedanken Experiments on Sequential Machines, pages 129–153.
In [Shannon and McCarthy, 1956].

Shannon, C. and McCarthy, J., editors (1956).
Automata Studies.
Princeton University Press.

Thompson, K. (1968).
Regular expression search algorithm.
Comm. ACM, 11(6):419–422.

114
MEMBRE DEIntroduction Input buffering Token Recognition Generators of lexical analyser Lexical analyzer by hand

Conclusion

DA53

Chapter 3
Syntax Analysis

Stéphane GALLAND

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion

2
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53OUTLINE

1 Introduction
General principles
Error recovery

2 Context-free grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion

3
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53SYNTAX ANALYZER OR PARSER

[C
h
o
m
sk
y,

1
9
5
6
,
B
a
ck
u
s,

1
9
5
9
,
N
a
u
r,

1
9
6
3
]

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Syntax Analyzer

Every programming
language has precise rules
that prescribe the syntactic
structure of well-formed
programs

Language syntax is specified
by context-free grammars or
Backus-Naur Form (BNF)

Reads a stream of tokens

Do a semantic analysis

Outputs a syntax tree

4
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53WHAT IS A LANGUAGE GRAMMAR? WHAT IS LANGUAGE SEMANTICS?

Syntax

Set of rules that defines the combinations of symbols that are considered to be
correctly structured statements or expressions in that language

Grammar

For text-based computer languages, a grammar gives a precise, easy-to-understand,
syntactic specification of a programming language

Semantics

Syntax therefore refers to the form of the code, and is contrasted with semantics: the
meaning

5
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53TYPES OF SYNTAX ANALYZERS

[Y
o
u
n
g
er
,
1
9
6
7
,
K
a
sa
m
i,
1
9
6
5
,
E
ar
le
y,

1
9
7
0
]

Universal Parsers

Build syntax tree as a whole

Top-down Parsers

Build the syntax tree from the
root rule to tokens

Bottom-up Parsers

Build the syntax tree from the
tokens to the root rule

6
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53TYPES OF SYNTAX ANALYZERS (CONT.)

[Y
o
u
n
g
er
,
1
9
6
7
,
K
a
sa
m
i,
1
9
6
5
,
E
ar
le
y,

1
9
7
0
]

LL→ writing a parser by hands — LR → automatic generation of parser

Universal Parsers

Algorithms, e.g.,
Cocke-Younger-Kasami and
Earley, are too inefficient

Top-down Parsers

Efficient with Left-Left (LL)
and Left-Right (LR)

grammars

Bottom-up Parsers

Efficient with Left-Left (LL)
and Left-Right (LR)

grammars

7
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53SYNTAX ERROR HANDLING

[D
a
in
,
1
9
9
1
]

Compiler assists programmers in
locating and tracking errors

Most programming language
specifications do not describe how a
compiler should respond to errors

Error handling is left to the compiler
designer

8
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53WHY HANDLING ERRORS DURING THE PARSING?

[D
a
in
,
1
9
9
1
]

1 LL and LR methods permits to detect errors efficiently and as soon as
possible

2 Many errors appear syntactic, whatever they cause, and avoid the code
generation

9
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53MISSIONS OF THE ERROR HANDLER

[D
a
in
,
1
9
9
1
]

01

Report errors

Report the presence of errors
clearly and accurately

02

Recover consistent
state

Recover from each error
quickly to detect subsequent

errors

03

Efficient

Add minimal overhead to the
processing of correct programs

10
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53TYPES OF PROGRAMMING ERRORS

Lexical Errors

Invalid lexemes, e.g., misspellings of
identifiers, keywords, or operators; and
missing quotes around text intended as a
string

Syntactic errors

Invalid tokens that are broking the
grammar, e.g., misplaced semicolons or
extra or missing braces. Another example is
a case outside an enclosing switch block

Semantic errors

Incorrect usage of the language elements in
the syntax tree, e.g., type mismatches
between operators and operands

Logical errors

Incorrect reasoning of the programmer,
e.g., the use of the operator ”=” in place
of the operator ”==”; or unreachable code

11
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53STRATEGIES FOR ERROR RECOVERY

Once an error is detected, how should the parser recover?

Simplest approach: parser quits with
an informative error message when it
detects the first error; additional
errors are uncovered

If errors are piled up, compiler stops
after exceeding some limit

Two error recovery strategies are usually used:

Panic Mode Phrase-level Mode

12
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53PANIC MODE

Parser discards input
symbols one at a time until
one of a designated set of
synchronizing tokens is
found

Synchronizing tokens are
usually delimiters
(semicolons or closing
braces)

Simple to implement and
ensure not to go into an
infinite loop

13
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53PHRASE-LEVEL RECOVERY

Local correction on the remaining input

Replace the prefix of the remaining input by some string that allows the parser to
continue

Examples

Replacing a coma by a semicolon, remove extraneous semicolon, or insert a missed
semicolon

The major drawback of the phrase-level recovery is the difficulty it has in
coping with situations in which the actual error has occurred before the
point of detection

14
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53WHY ARE GLOBAL CORRECTIONS DISCARDED?

Principle of Global Corrections

Given an incorrect input string x and grammar G

Find a syntax tree for a related string y

Condition: number of insertions, deletions, and changes of tokens required to
transform x to y is as small as possible

This method is usually too costly in time and space

Global corrections has been used to

Evaluate error-recovery algorithms

Find optimal replacement strings for phrase-level recovery

15
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ERROR PRODUCTIONS FOR ANTICIPATED ERROR DETECTION

Augment the grammar
with rules/productions
that generate the
erroneous constructs

Detect error when
error production is
used during parsing

Generate appropriate
error diagnostics with
appropriate lexemes

16
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar
Definition and notation
Derivations and Parse Tree
Ambiguity of a grammar
Verifying the language supported by a grammar
Context-free grammar and regular expression
Optimizing the Grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion

17
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53WHAT IS A FORMAL GRAMMAR?

[C
h
o
m
sk
y,

1
9
5
6
,

B
a
ck
u
s,

1
9
5
9
,

N
a
u
r,

1
9
6
3
,

In
g
er
m
a
n
,
1
9
6
7
,

H
o
p
cr
o
ft

et
a
l.
,
2
0
0
6
]

A formal grammar consists of productions, that consist of terminals, nonterminals;
and a start symbol

S → a S b
S → b a

18
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53WHAT IS A FORMAL GRAMMAR?

A formal grammar consists of productions, that consist of terminals, nonterminals;
and a start symbol

S → a S b
S → b a

Terminal — Token Name

The basic symbols from which strings are formed
It could be assimilated to a token, replied by the lexical analyzer (see Chapter 2)

18
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53WHAT IS A FORMAL GRAMMAR?

A formal grammar consists of productions, that consist of terminals, nonterminals;
and a start symbol

S → a S b
S → b a

Nonterminals

Syntactic variables that denote sets of strings that generate the language
Nonterminals impose a hierarchical structure on the language
Nonterminals must be defined in the grammar itself

18
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53WHAT IS A FORMAL GRAMMAR?

A formal grammar consists of productions, that consist of terminals, nonterminals;
and a start symbol

S → a S b
S → b a

Production

Productions specify the manner in which the terminals and nonterminals can be
combined to form strings
Each production consists of:

1 A nonterminal called the head or left side

2 The symbol “→” (or “::=”, or “|=”)

3 A body, or right side, consisting of zero or more terminals and nonterminals,
describing a replacement for the head

18
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53WHAT IS A FORMAL GRAMMAR?

A formal grammar consists of productions, that consist of terminals, nonterminals;
and a start symbol

S → a S b
S → b a

Start Symbol

Nonterminal from which all the language’s strings could be revided
Conventionally: the head of the first production is the start symbol

18
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53FORMAL DEFINITION OF A GRAMMAR BY CHOMSKY

[C
h
o
m
sk
y,

1
9
5
6
]

G = ⟨N,Σ,P,S⟩

Finite set N of nonterminal symbols, that is disjoint with the strings formed from
G
Finite set Σ of terminal symbols that is disjoint from N
Finite set P of production rules, each rule of the form
(Σ ∪ N)∗N(Σ ∪ N)∗ → (Σ ∪ N)∗

where ∗ is the Kleene star operator
Symbol S ∈ N that is the start symbol, also called the sentence symbol
Empty string is represented by ϵ (or λ, or ⊥)

The language of G , denoted as L(G), is defined as the set of sentences built by G

19
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53NOTATIONAL CONVENTIONS FOR GRAMMARS

Terminals

Lowercase letters early in the alphabet, such as a, b, c, . . .

Operator symbols, such as +, *, . . .

Punctuation symbols, such as parentheses, commas, . . .

Digits 0, . . . , 9

Boldface strings, such as id or number

Underlined strings, such as id or number

Nonterminals

Uppercase letters, such as A, B, C, . . .

The letter S which, when it appears, is usually the start symbol

Lowercase, italic names, such as expression, factor, . . .

Enclosed names, e.g. ⟨expression⟩

20
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53NOTATIONAL CONVENTIONS FOR GRAMMARS (CONT.)

Productions

A set of productions A→ a1,A→ a2, . . . ,A→ ak with a common head A (call them
A-productions), may be written A→ a1 | a2 | . . . | ak

Others Notations

Uppercase letters late in the alphabet, such as X, Y, Z, represent grammar
symbols that is, either nonterminals or terminals

Lowercase letters late in the alphabet, chiefly u, v, . . . , z, represent (possibly
empty) strings of terminals

Lowercase Greek letters α, β, . . . , represent (possibly empty) strings of grammar
symbols

21
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53GENERAL PRINCIPLE OF PARSING

Parsing

Parsing is the process of taking a string of terminals and figuring out how to derive it
from the start symbol
If the string cannot be derived, the parser reports a syntax error

Grammar derives
strings by beginning
with the start symbol

Repeated replacement
of a nonterminal by
the body of a
production for that
nonterminal

Terminal strings, that
can be derived, form
the language defined
by the grammar,
namely, L(G)

22
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF A GRAMMAR

Arithmetic expressions are defined by the following grammar.
The terminals are:

Operators: +, -, *, /, (,)
Numbers: number stands for any number
Identifier: id stands for any variable’s name

The grammar is:

⟨expression⟩ ::= ⟨expression⟩+⟨term⟩
::= ⟨expression⟩-⟨term⟩

⟨term⟩ ::= ⟨term⟩*⟨factor⟩
::= ⟨term⟩/⟨factor⟩
::= ⟨factor⟩

⟨factor⟩ ::= (⟨expression⟩)
::= number

::= id

23
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53HIERARCHY OF GRAMMARS BY CHOMSKY: TYPE-0

[C
h
o
m
sk
y,

1
9
5
6
]

Type-3
Regular

Type-2
Context-Free

Type-1
Context-Sensitive

Type-0
Recursively enumerable

Type-0 grammars generates
languages that can be
recognized by a Turing
machine

γ → α

Example: L = {w |w}
describes a terminating
Turing machine

Recognition Complexity:
NP-hard

24
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53HIERARCHY OF GRAMMARS BY CHOMSKY: TYPE-1

[C
h
o
m
sk
y,

1
9
5
6
]

Type-3
Regular

Type-2
Context-Free

Type-1
Context-Sensitive

Type-0
Recursively enumerable

Type-1 grammars generate
context-sensitive languages

αAβ → αγβ
with γ ̸= ϵ

Example:
L = {anbncn|n > 0}

Example: natural languages

Recognition Complexity:
NP-hard

25
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53HIERARCHY OF GRAMMARS BY CHOMSKY: TYPE-2

[C
h
o
m
sk
y,

1
9
5
6
]

Type-3
Regular

Type-2
Context-Free

Type-1
Context-Sensitive

Type-0
Recursively enumerable

Type-2 grammars generate
the context-free languages

A→ α

Example: L = {anbn|n > 0}

Example: Most of
programming languages

Recognition Complexity:
O(n3)

The rest of this
lecture focuses
on context-free
grammars

26
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53HIERARCHY OF GRAMMARS BY CHOMSKY: TYPE-3

[C
h
o
m
sk
y,

1
9
5
6
]

Type-3
Regular

Type-2
Context-Free

Type-1
Context-Sensitive

Type-0
Recursively enumerable

Type-3 grammars generate
the regular languages

A→ a
A→ aB

Example: L = {an|n ≥ 0}

Example: Regex pattern
specification

Recognition Complexity:
O(n)

27
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar
Definition and notation
Derivations and Parse Tree

Derivations for a Grammar
Parse Tree
Building a Parse Tree with Derivations

Ambiguity of a grammar
Verifying the language supported by a grammar
Context-free grammar and regular expression
Optimizing the Grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
28

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53PRODUCTION RULE APPLICATION

Production Rule Application

Rule application replaces the production’s nonterminal by its body

Formally: string v is a result of applying the rule α→ β to string u if ∃α→ β ∈ P
and ∃u1, u2 ∈ (N ∪ Σ)∗, such that u = u1αu2 and v = u1βu2

Notation: α⇒ β

Example

⟨E⟩ ::= ⟨E⟩+⟨E⟩
::= ⟨E⟩*⟨E⟩
::= -⟨E⟩
::= (⟨E⟩)
::= id

Input is: -variable

The replacement of ⟨E⟩ by -⟨E⟩ will be described by
writing:

⟨E⟩ ⇒ -⟨E⟩
It means: ⟨E⟩ derives in one step to -⟨E⟩

29
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53DERIVATION OR REPETITIVE RULE APPLICATION

Repetitive Rule Application

Sequence of derivations u1 ⇒ u2 ⇒ . . .⇒ uk rewrites u1 to un

Formally: string u derives to string v if ∃k ∈ N+ and ∃u1, · · · , uk ∈ (N ∪ Σ)∗ such
that u1 ⇒ u2 ⇒ · · · ⇒ uk , u = u1 and v = uk

Notation 1: u1
∗⇒ uk (reflexive transitive closure)

Notation 2: if k ≥ 2, u1
+⇒ uk (transitive closure)

Properties

Identity: α
∗⇒ α, for any string α

Transitivity: If α
∗⇒ β, and β ⇒ γ, then α

∗⇒ γ

30
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53DERIVATION AS A SENTENCE OF A GRAMMAR

If S
∗⇒ a, where ⟨S⟩ is the start symbol of a grammar G , we say that a is a

sentential form of G

A sentence of G is a sentential form, which is nonterminal

The language generated by G is its set of sentences

A string of terminals w is in L(G) iff S
∗⇒ w

Thus L(G) is said to be a context-free language

31
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53LEFTMOST AND RIGHTMOST DERIVATIONS

At each step in a derivation, there are two choices to be made:

1 Choose which nonterminal to replace
2 Pick a production with that nonterminal as head

Leftmost
Derivation

Leftmost nonterminal is
always chosen

α⇒
lm

β

Rightmost
Derivation

Rightmost nonterminal is
always chosen

α⇒
rm

β

32
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF DERIVATIONS

Grammar:

⟨E⟩ ::= ⟨E⟩+⟨E⟩
::= ⟨E⟩*⟨E⟩
::= (⟨E⟩)
::= id

Input string:
2 + 4 * 6

List of tokens:
id+id*id

Left-most Derivations:
⟨E⟩ ⇒

lm
⟨E⟩+⟨E⟩

Right-most Derivations:
⟨E⟩ ⇒

rm
⟨E⟩+⟨E⟩

33
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF DERIVATIONS

Grammar:

⟨E⟩ ::= ⟨E⟩+⟨E⟩
::= ⟨E⟩*⟨E⟩
::= (⟨E⟩)
::= id

Input string:
2 + 4 * 6

List of tokens:
id+id*id

Left-most Derivations:
⟨E⟩ ⇒

lm
⟨E⟩+⟨E⟩

⇒
lm

id+⟨E⟩

Right-most Derivations:
⟨E⟩ ⇒

rm
⟨E⟩+⟨E⟩

⇒
rm

⟨E⟩+⟨E⟩*⟨E⟩

33
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF DERIVATIONS

Grammar:

⟨E⟩ ::= ⟨E⟩+⟨E⟩
::= ⟨E⟩*⟨E⟩
::= (⟨E⟩)
::= id

Input string:
2 + 4 * 6

List of tokens:
id+id*id

Left-most Derivations:
⟨E⟩ ⇒

lm
⟨E⟩+⟨E⟩

⇒
lm

id+⟨E⟩
⇒
lm

id+⟨E⟩*⟨E⟩

Right-most Derivations:
⟨E⟩ ⇒

rm
⟨E⟩+⟨E⟩

⇒
rm

⟨E⟩+⟨E⟩*⟨E⟩
⇒
rm

⟨E⟩+⟨E⟩*id

33
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF DERIVATIONS

Grammar:

⟨E⟩ ::= ⟨E⟩+⟨E⟩
::= ⟨E⟩*⟨E⟩
::= (⟨E⟩)
::= id

Input string:
2 + 4 * 6

List of tokens:
id+id*id

Left-most Derivations:
⟨E⟩ ⇒

lm
⟨E⟩+⟨E⟩

⇒
lm

id+⟨E⟩
⇒
lm

id+⟨E⟩*⟨E⟩
⇒
lm

id+id*⟨E⟩

Right-most Derivations:
⟨E⟩ ⇒

rm
⟨E⟩+⟨E⟩

⇒
rm

⟨E⟩+⟨E⟩*⟨E⟩
⇒
rm

⟨E⟩+⟨E⟩*id
⇒
rm

⟨E⟩+id*id

33
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF DERIVATIONS

Grammar:

⟨E⟩ ::= ⟨E⟩+⟨E⟩
::= ⟨E⟩*⟨E⟩
::= (⟨E⟩)
::= id

Input string:
2 + 4 * 6

List of tokens:
id+id*id

Left-most Derivations:
⟨E⟩ ⇒

lm
⟨E⟩+⟨E⟩

⇒
lm

id+⟨E⟩
⇒
lm

id+⟨E⟩*⟨E⟩
⇒
lm

id+id*⟨E⟩
⇒
lm

id+id*id

Right-most Derivations:
⟨E⟩ ⇒

rm
⟨E⟩+⟨E⟩

⇒
rm

⟨E⟩+⟨E⟩*⟨E⟩
⇒
rm

⟨E⟩+⟨E⟩*id
⇒
rm

⟨E⟩+id*id

⇒
rm

id+id*id

33
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF DERIVATIONS

Grammar:

⟨E⟩ ::= ⟨E⟩+⟨E⟩
::= ⟨E⟩*⟨E⟩
::= (⟨E⟩)
::= id

Input string:
2 + 4 * 6

List of tokens:
id+id*id

Left-most Derivations:
⟨E⟩ ⇒

lm
⟨E⟩+⟨E⟩

⇒
lm

id+⟨E⟩
⇒
lm

id+⟨E⟩*⟨E⟩
⇒
lm

id+id*⟨E⟩
⇒
lm

id+id*id

Right-most Derivations:
⟨E⟩ ⇒

rm
⟨E⟩+⟨E⟩

⇒
rm

⟨E⟩+⟨E⟩*⟨E⟩
⇒
rm

⟨E⟩+⟨E⟩*id
⇒
rm

⟨E⟩+id*id

⇒
rm

id+id*id

Grammar is ambiguous because the following derivation is possible on the input:
⟨E⟩ ⇒

lm
⟨E⟩*⟨E⟩ ⇒

lm
⟨E⟩+⟨E⟩*⟨E⟩ ⇒

lm
id+⟨E⟩*⟨E⟩ ⇒

lm
id+id*⟨E⟩ ⇒

lm
id+id*id

33
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar
Definition and notation
Derivations and Parse Tree

Derivations for a Grammar
Parse Tree
Building a Parse Tree with Derivations

Ambiguity of a grammar
Verifying the language supported by a grammar
Context-free grammar and regular expression
Optimizing the Grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
34

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53WHAT IS A PARSE TREE?

Parse Tree

A parse tree shows how the start symbol of a grammar derives a string
It is a graphical representation of the productions on an input string of tokens

⟨S⟩

α ⟨A⟩ a β

c γ

The root is labeled by the start symbol

Each leaf is labeled by a terminal or by ϵ

Each interior node is labeled by a nonterminal

If A is the nonterminal of some interior node
and X1,X2, . . . ,Xn are the labels of the
children of that node from left to right, then
there must be a production A→ X1X2 . . .Xn

Parsing is the process of building a parse tree from a string of tokens

35
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF A PARSE TREE

Let the string to parse:

9 - 5 + 2

Let the grammar:

⟨expression⟩ ::= ⟨expression⟩+⟨term⟩
::= ⟨expression⟩-⟨term⟩
::= ⟨term⟩

⟨term⟩ ::= ⟨term⟩*⟨factor⟩
::= ⟨term⟩/⟨factor⟩
::= ⟨factor⟩

⟨factor⟩ ::= (⟨expression⟩)
::= number

::= id

The parse tree is:

factor

-

factor

+expression

termterm

number:9 number:5

term

factor

number:2

expression

36
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar
Definition and notation
Derivations and Parse Tree

Derivations for a Grammar
Parse Tree
Building a Parse Tree with Derivations

Ambiguity of a grammar
Verifying the language supported by a grammar
Context-free grammar and regular expression
Optimizing the Grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
37

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53ALGORITHM TO BUILD A PARSE TREE WITH DERIVATIONS

Inputs : A sequence of tokens T . A grammar G with the start symbol s0.
Output : A parse tree that corresponds to T and G .
begin

r ← node (s0, T) ; L ← [r] ; input[r] ← T ;
while L = [n].L′ do /* Leftmost derivation */

L ← L′ ;
if ∃(label(n)→ b) ∈ G |input[n] matches b then

foreach αsβ = b do
m ← ω ∈ T |(input[α] ω input[β]) = input[n] ;
c ← node (s) ;
addChild (n,c) ;
if s is nonterminal then

L ← L.[c] ;
input[c] ← m ;

end

end

end

end
return r

end

38
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF PARSE TREE BUILDING

Let the grammar: ⟨E⟩ ::= ⟨E⟩+⟨E⟩
::= ⟨E⟩*⟨E⟩
::= -⟨E⟩
::= (⟨E⟩)
::= id

Tokens: id+id*id

L = [E]

Parse tree is:

E

39
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF PARSE TREE BUILDING

Let the grammar: ⟨E⟩ ::= ⟨E⟩+⟨E⟩
::= ⟨E⟩*⟨E⟩
::= -⟨E⟩
::= (⟨E⟩)
::= id

Tokens: id+id*id

L = [n].L′ = [E]
input = id+id*id
b = E0+E1

inputE0 = id
inputE1 = id*id

L = [E0,E1]

Parse tree is:

E

+E E

39
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF PARSE TREE BUILDING

Let the grammar: ⟨E⟩ ::= ⟨E⟩+⟨E⟩
::= ⟨E⟩*⟨E⟩
::= -⟨E⟩
::= (⟨E⟩)
::= id

Tokens: id+id*id

L = [n].L′ = [E ,E]
input = id
b = id

L = [E]

Parse tree is:

E

+E E

id

39
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF PARSE TREE BUILDING

Let the grammar: ⟨E⟩ ::= ⟨E⟩+⟨E⟩
::= ⟨E⟩*⟨E⟩
::= -⟨E⟩
::= (⟨E⟩)
::= id

Tokens: id+id*id

L = [n].L′ = [E]
input = id*id
b = E0*E1

inputE0 = id
inputE1 = id

L = [E0,E1]

Parse tree is:

E

+E E

id *E E

39
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF PARSE TREE BUILDING

Let the grammar: ⟨E⟩ ::= ⟨E⟩+⟨E⟩
::= ⟨E⟩*⟨E⟩
::= -⟨E⟩
::= (⟨E⟩)
::= id

Tokens: id+id*id

L = [n].L′ = [E ,E]
input = id
b = id

L = [E]

Parse tree is:

E

+E E

id *E E

id

39
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF PARSE TREE BUILDING

Let the grammar: ⟨E⟩ ::= ⟨E⟩+⟨E⟩
::= ⟨E⟩*⟨E⟩
::= -⟨E⟩
::= (⟨E⟩)
::= id

Tokens: id+id*id

L = [n].L′ = [E]
input = id
b = id

L = []

Parse tree is:

E

+E E

id *E E

id id

39
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar
Definition and notation
Derivations and Parse Tree
Ambiguity of a grammar
Verifying the language supported by a grammar
Context-free grammar and regular expression
Optimizing the Grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion

40
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53WHAT IS AN AMBIGUOUS GRAMMAR?

[C
a
n
to
r,

1
9
6
2
,
F
lo
yd

,
1
9
6
2
]

A grammar that produces more than one parse tree for some sentence is said to be
ambiguous

An ambiguous grammar is one that produces more than one leftmost derivation or more
than one rightmost derivation for the same sentence

Example

Leftmost derivations for the arithmetic expression id+id*id

⟨E⟩ ⇒ ⟨E⟩+⟨E⟩
⇒ id+⟨E⟩
⇒ id+⟨E⟩*⟨E⟩
⇒ id+id*⟨E⟩
⇒ id+id*id

E

+E E

id *E E

id id

⟨E⟩ ⇒ ⟨E⟩*⟨E⟩
⇒ ⟨E⟩+⟨E⟩*⟨E⟩
⇒ id+⟨E⟩*⟨E⟩
⇒ id+id*⟨E⟩
⇒ id+id*id

E

*E E

id+E E

id id

41
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53GRAMMAR AMBIGUITY IS NOT DESIRABLE

For parsers, it is desirable that the grammar be made unambiguous. Otherwise we
cannot determine which parse tree to select for a sentence

Another way is to use carefully chosen ambiguous grammars, together with
disambiguating rules that discard undesirable parse trees, leaving only one tree for
each sentence

42
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar
Definition and notation
Derivations and Parse Tree
Ambiguity of a grammar
Verifying the language supported by a grammar
Context-free grammar and regular expression
Optimizing the Grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion

43
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53VERIFYING THE LANGUAGE SUPPORTED BY A GRAMMAR

Even if compiler designers rarely do this task, it is useful to be able to verify
if a language can be generated from a grammar

Proof that a grammar G generates a language L has two parts:

1 Show up that every string generated by G is in L

2 Show up that every string in L can be generated by G

Example

Considerer the following grammar:

⟨S⟩ → (⟨S⟩)⟨S⟩ | ϵ

It may not be apparent, but this grammar generates all the strings of balanced parentheses,

and only such strings. That why, we need to proceed the two steps of the proof

44
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53PART 1: EVERY STRING GENERATED BY G IS IN L

Basis : The basis is n = 1. The only string of terminals derivable from ⟨S⟩ in
one step is the empty string, which is balanced

Assumption: Assume that all derivations of fewer than n steps produce balanced
sentences, and consider a leftmost derivation of exactly n steps

Induction : Such derivations must be of the form:

⟨S⟩ ⇒
lm

(⟨S⟩)⟨S⟩ ⇒
lm

(α)⟨S⟩ ⇒
lm

(α)β

Derivations of α and β from ⟨S⟩ take fewer than n steps, so by the
inductive hypothesis α and β are balanced
Therefore, the string “(αβ” must be balanced

45
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53PART 2: EVERY STRING IN L CAN BE GENERATED BY G

Basis : If the string has length 0, it must be ϵ, which is balanced
Induction:

Observe that every balanced string has even length

Assume that every balanced string of length less than 2n is derivable from ⟨S⟩,
and consider a balanced string w of length 2n, n ≥ 1. Surely w begins with a left
parenthesis

Let (α) be the shortest nonempty prefix of w having an equal number of left and
right parentheses

Then w can be written w = (α)β where both α and β are balanced. Since α and
β are of length less than 2n, they are derivable from ⟨S⟩ by the inductive
hypothesis. Thus, we can find a derivation of the form:

⟨S⟩ ⇒ (⟨S⟩)⟨S⟩ ∗⇒ (α)⟨S⟩ ∗⇒ (α)β

Proving that w = (α)β is also derivable from ⟨S⟩

46
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar
Definition and notation
Derivations and Parse Tree
Ambiguity of a grammar
Verifying the language supported by a grammar
Context-free grammar and regular expression
Optimizing the Grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion

47
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53CONTEXT-FREE GRAMMAR V.S. REGULAR EXPRESSION

Grammars are more powerful notation than regular expressions
Every construct that can be described by a regular expression can be
described by a grammar, but not vice-versa

Example (Grammar, and Regex)

Regex (a|b)*abb and the following
grammar describe the same language:

⟨A⟩ ::= a⟨A⟩
::= b⟨A⟩
::= a⟨B⟩

⟨B⟩ ::= b⟨C⟩
⟨C⟩ ::= b⟨D⟩
⟨D⟩ ::= ϵ

Example (Grammar, no Regex)

Language L = anbn|n ≥ 1 can be described
by a grammar but not by a regular
expression (except with Posix extension)

48
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53FROM NONDETERMINISTIC FINITE AUTOMATON TO GRAMMAR

begin
foreach state i of the NFA do

Ai ← createNonterminal (i) ;
foreach transition t from i to j do

if t on token a then
P ← P ∪ (⟨Ai ⟩ → a⟨Aj⟩) ;

end
if t on ϵ then

P ← P ∪ (⟨Ai ⟩ → ⟨Aj⟩) ;
end

end
if i is accepting state then

P ← P ∪ (⟨Ai ⟩ → ϵ) ;
end
if i is starting state then

makeFirstProduction(Ai) ;
end

end

end

49
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53WHY USING REGEX?

Why use regular expressions to define the lexical syntax of a language?

1 Separating the syntactic structure of a language into lexical and non-lexical parts
provides a better modularity

2 Lexical rules of a language are frequently quite simple, and to describe them we
do not need a notation as complex as the grammars

3 Regular expressions generally provide a more concise and easier-to-understand
notation for tokens than grammars

4 More efficient lexical analyzers can be constructed automatically from regular
expressions than from arbitrary grammars

Regular expressions are useful to
describe constructs such as
identifiers, numbers. . .

Grammars are most useful for
describing nested structures such as
balanced parentheses, corresponding

if-then-else. . .

50
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar
Definition and notation
Derivations and Parse Tree
Ambiguity of a grammar
Verifying the language supported by a grammar
Context-free grammar and regular expression
Optimizing the Grammar

Eliminating the ambiguity
Eliminating the left recursion
Left factoring

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
51

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53EXAMPLE OF AMBIGUITY: “DANGLING ELSE”

An ambiguous grammar can be rewritten to eliminate the ambiguity

Grammar:

⟨statement⟩ ::= if⟨expression⟩then⟨statement⟩
::= if⟨expression⟩then⟨statement⟩else⟨statement⟩
::= other

Input: if E1 then if E2 then S1 else S2

statement

if then statementexpression

if then statementexpression else statement
E1

E2 S1 S2

statementif then

statement

expression

if then statementexpression else statement

E2

E1

S1

S2

The first tree is preferred according to “Match each else with the closest unmatched
then.” This rule is rarely built into productions

52
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53SOLVING AMBIGUITY: “DANGLING ELSE” — COMPLEX

The disambiguation of this “if-then-else” problem may be included into a new grammar

⟨statement⟩ ::= if⟨expression⟩then⟨statement⟩
::= if⟨expression⟩then⟨statement⟩else⟨statement⟩
::= id

⟨statement⟩ ::= ⟨matched statement⟩
::= ⟨open statement⟩

⟨matched statement⟩ ::= if⟨expression⟩then⟨matched statement⟩
else⟨matched statement⟩

::= id

⟨open statement⟩ ::= if⟨expression⟩then⟨statement⟩
::= if⟨expression⟩then⟨matched statement⟩else⟨open statement⟩

53
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53SOLVING AMBIGUITY: “DANGLING ELSE” — SIMPLE

The disambiguation of this “if-then-else” problem may be included into a new grammar

⟨statement⟩ ::= if⟨expression⟩then⟨statement⟩
::= if⟨expression⟩then⟨statement⟩else⟨statement⟩
::= id

⟨statement⟩ ::= if⟨expression⟩then⟨statement⟩⟨else statement⟩
::= id

⟨else statement⟩ ::= else⟨statement⟩
::= ϵ

54
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar
Definition and notation
Derivations and Parse Tree
Ambiguity of a grammar
Verifying the language supported by a grammar
Context-free grammar and regular expression
Optimizing the Grammar

Eliminating the ambiguity
Eliminating the left recursion
Left factoring

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
55

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53LEFT RECURSIVE GRAMMAR

Left-Recursive Grammar

Grammar is left recursive if it has a nonterminal ⟨A⟩ such that for some string α there
is a derivation

⟨A⟩ +⇒ ⟨A⟩α

Top-down parsing methods cannot handle left-recursive grammars

A transformation is needed to eliminate left recursion

56
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF ELIMINATING LEFT RECURSION

⟨E⟩ ::= ⟨E⟩ + ⟨E⟩
::= ⟨E⟩ * ⟨E⟩
::= - ⟨E⟩
::= (⟨E⟩)
::= id

⟨E⟩ ::= - ⟨E⟩ ⟨RE ⟩
::= (⟨E⟩) ⟨RE ⟩
::= id ⟨RE ⟩

⟨RE ⟩ ::= + ⟨E⟩ ⟨RE ⟩
::= * ⟨E⟩ ⟨RE ⟩
::= ϵ

57
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ELIMINATING LEFT RECURSION

Input : Grammar G = ⟨N,Σ,P, S⟩
Output : An equivalent grammar without left recursion

begin
while ∃A|(⟨A⟩ → ⟨A⟩ γ) ∈ P do

foreach p = (⟨A⟩ → b δ) ∈ P ∧ b ̸= A do
P←P \ {p} ;
P←P ∪ {(⟨RA⟩ → b δ ⟨RA⟩)} ;

end
P = P ∪ {(⟨RA⟩ → ϵ)} ;
foreach p = (⟨A⟩ → ⟨A⟩ ω) ∈ P do

P←P \ {p} ;
P←P ∪ {(⟨A⟩ → ω ⟨RA⟩)} ;

end

end

end

58
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar
Definition and notation
Derivations and Parse Tree
Ambiguity of a grammar
Verifying the language supported by a grammar
Context-free grammar and regular expression
Optimizing the Grammar

Eliminating the ambiguity
Eliminating the left recursion
Left factoring

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
59

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53LEFT FACTORING

When the choice between two alternatives A-productions is not clear, we
may be able to rewrite the productions to defer the decision until enough of
the input has been seen that we can make the right choice

⟨statement⟩ ::= if ⟨expression⟩ then ⟨expression⟩ else ⟨expression⟩
::= if ⟨expression⟩ then ⟨expression⟩
::= id

Left factoring is a grammar transformation that is useful for producing a grammar
suitable for predictive, or top-down, parsing

60
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF LEFT FACTORING

⟨statement⟩ ::= if ⟨expression⟩ then ⟨statement⟩ else ⟨statement⟩
::= if ⟨expression⟩ then ⟨statement⟩
::= id

⟨statement⟩ ::= if ⟨expression⟩ then ⟨statement⟩ ⟨else statement⟩
::= id

⟨else statement⟩ ::= else ⟨statement⟩
::= ϵ

61
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ALGORITHM FOR LEFT FACTORING

Input : Grammar G = ⟨N,Σ,P, S⟩
Output : An equivalent left-factored grammar

begin
while ∃A ∈ P|(⟨A⟩ → α γ), (⟨A⟩ → α δ) do

foreach p = (⟨A⟩ → α ω) ∈ P do
P←P \ {p} ;
if ω ̸= ϵ then

P←P ∪ {(⟨RA⟩ → ω)} ;
end

end
P←P ∪ {(⟨A⟩ → α ⟨RA⟩)} ;
P←P ∪ {(⟨RA⟩ → ϵ)} ;

end

end

62
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing
Bottom-up parsing
LR(k) parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion

63
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53WHAT ARE THE FUNCTIONS FIRST AND FOLLOW?

The construction of both top-down and bottom-up parsers is aided by two
functions associated with a grammar G:

1 FIRST
2 FOLLOW

These functions allow us to choose which production to apply, based on the next
input symbol

During panic-mode error recovery the set of tokens replied by FOLLOW can be
used as synchronizing tokens

64
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53DEFINITION OF FIRST

Define FIRST(α), where α is any string of grammar symbols, to be the set of
terminals that begin strings derived from α

If α
∗⇒ ϵ, then ϵ is also in FIRST(α)

Example

A
∗⇒ c γ

FIRST(A) = {c} ⟨S⟩

α ⟨A⟩ a β

c γ

65
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ALGORITHM OF FIRST

To compute FIRST(X), apply the following rules until no more terminals or ϵ can
be added to any FIRST set

1 FIRST(X) = {X} if X is a terminal
2 If X is a nonterminal and ⟨X⟩ → Y1 Y2 . . .Yk is a production for some k ≥ 1, then

Add a in FIRST(X) if ∃i such that a ∈ FIRST(Yi)

Add ϵ in FIRST(X) if Y1 Y2 . . .Yk
∗⇒ ϵ

Add ϵ to FIRST(X) if ∀j ∈ {1, 2, . . . , k}, ϵ ∈ FIRST(Yj)

3 Add ϵ to FIRST(X) if ⟨X⟩ → ϵ is a production

Add all non-ϵ symbols of FIRST(Xi) for i ∈ {1 . . . n} to FIRST(X1 X2 . . .Xn)

66
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53DEFINITION OF FOLLOW

Define FOLLOW(A), where A is a nonterminal, to be the set of terminals a that can appear immediately
to the right of A in some sentential form

The set of terminals a such that there exists a derivation of the form S
∗⇒ α A a β, for some α and β

Note that there may have been symbols between A and a, at some time during the derivation, but if so,
they derive ϵ and disappeared

If A can be the rightmost symbol, then eof (or usually $) is in FOLLOW(A)

Example

A
∗⇒ c γ

a ∈ FOLLOW(A) ⟨S⟩

α ⟨A⟩ a β

c γ

67
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ALGORITHM OF FOLLOW

To compute FOLLOW(A) for a nonterminal A, apply the following rules until
nothing can be added to any FOLLOW set

1 Place eof in FOLLOW(S), where S is the start symbol, and eof is the input right
end-marker

2 If there is a production ⟨A⟩ → α ⟨B⟩ β, then everything in FIRST(β), except ϵ is
added in FOLLOW(B)

3 If there is a production ⟨A⟩ → α ⟨B⟩, or a production ⟨A⟩ → α ⟨B⟩ β, where
FIRST(β) contains ϵ, then everything in FOLLOW(A) is added to FOLLOW(B)

68
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing

Principles
Recursive-descent parsing
LL(1) grammars
Nonrecursive predictive parsing
Error recovery in predictive parsing

Bottom-up parsing
LR(k) parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
69

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53TOP-DOWN PARSING

Top-Down Parsing

Constructing a parse tree for the input string, starting from the root of the grammar,
and creating the nodes of the parse tree in preorder

Top-down parsing can be viewed as finding a leftmost derivation for an input string

Illustrative Input String and Grammar

Input string: id+id*id
Grammar: ⟨E⟩ ::= ⟨T⟩ ⟨E’⟩

⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩ | ϵ
⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩ | ϵ
⟨F⟩ ::= (⟨E⟩) | id

70
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53TYPES OF TOP-DOWN PARSING

Recursive-descent
Parsing

General form, which may
require backtracking to find
the correct A-production

Predictive Parsing

Special form without
backtracking; A-production
chosen by looking ahead a
fixed number of tokens

Class of grammars dedicated to the predictive parsers looking k symbols ahead in
the input is called LL(k) class

71
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing

Principles
Recursive-descent parsing
LL(1) grammars
Nonrecursive predictive parsing
Error recovery in predictive parsing

Bottom-up parsing
LR(k) parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
72

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53RECURSIVE-DESCENT PARSING

[H
o
ar
e,

1
9
6
2
,
S
ch

or
re
,
1
9
6
4
,
M
cC

lu
re
,
1
9
6
5
]

Recursive-descent parsing program consists of a set of procedures, one for each
nonterminal

Procedure A
Input : Production ⟨A⟩ → α1 . . . αk

begin
for i ← 1 to k do

if αi is nonterminal then
call αi () ;

else if αi =current input symbol a then
forward ← forward + 1 // Move input pointer;

else
Report an error ;

end

end

end

73
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53PROBLEM OF INFINITE LOOP

Left-recursive grammar can cause a recursive-descent
parser to go into an infinite loop

When: expand a nonterminal A, the same nonterminal is found again and
expanded without consuming input

⟨E⟩ ::= ⟨E⟩ + ⟨E⟩
::= ⟨E⟩ * ⟨E⟩
::= - ⟨E⟩
::= (⟨E⟩)
::= id

E ⇒ E + E
⇒ E + E + E
⇒ E + E + E + E
⇒ E + E + E + E + E
⇒ . . .

74
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing

Principles
Recursive-descent parsing
LL(1) grammars
Nonrecursive predictive parsing
Error recovery in predictive parsing

Bottom-up parsing
LR(k) parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
75

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53LL(1) GRAMMAR

[L
ew

is
a
n
d
S
te
ar
n
s,

1
9
6
8
,
B
ir
m
a
n
a
n
d
U
ll
m
a
n
,
1
9
7
3
]

LL(1) Grammar

Class of grammars that have the following properties:

Left-to-right input scanning
Leftmost derivation

1 input symbol is used for lookahead to make parsing action decisions

Predictive parser can be constructed for LL(1) grammars, because no
backtracking is needed

LL(1) grammars are rich enough to cover most programming constructs

But, they must be neither left-recursive nor ambiguous

76
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53DEFINITION OF A LL(1) GRAMMAR

LL(1) Grammar (refined)

Grammar G is LL(1) iff whenever ⟨A⟩ → α | β are two distinct productions of G , the
following conditions hold:

1 For nonterminal a, both α and β derive strings beginning with a

2 At most one of α and β can derive the empty string

3 If β
∗⇒ ϵ, then α does not derive any string beginning with a terminal in FOLLOW(A)

4 Likewise, if α
∗⇒ ϵ, then β does not derive any string beginning with a terminal in

FOLLOW(A)

⟨statement list⟩ ::= ⟨statement⟩ ⟨statement list⟩
::= ϵ

⟨statement⟩ ::= if(⟨expression⟩)⟨statement⟩else⟨statement⟩
::= while(⟨expression⟩)⟨statement⟩
::= {⟨statement list⟩}

77
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53PARSING A LL(1) GRAMMAR

To parse an input string, a
table should be build

It determines the production
to use from a given
production and the input
symbol

Table M[A, a] is built from
FIRST and FOLLOW sets,
where A is a nonterminal,
and a is a terminal or eof

78
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ALGORITHM FOR BUILDING THE PREDICTIVE-PARSING TABLE

Input : Grammar G = ⟨N,Σ,P, S⟩
Output : Parsing table M

begin
foreach (⟨A⟩ → α) ∈ P do

foreach terminal a ∈ FIRST(α) do
M[A, a] ← M[A, a] ∪ (⟨A⟩ → α)

end
if ϵ ∈ FIRST(α) then

foreach b ∈ FOLLOW(A) do
M[A, b] ← M[A, b] ∪ (⟨A⟩ → α)

end
if eof ∈ FOLLOW(A) then

M[A, eof] ← M[A, eof] ∪ (⟨A⟩ → α)
end

end

end
if ∀α, M[A, α] = ∅ then

M[A, α] ← error
end

end

79
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF TABLE BUILDING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id + * () eof
E
E ′

T
T ′

F

80
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF TABLE BUILDING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id + * () eof
E
E ′

T
T ′

F

For production: (1) ⟨E⟩ → ⟨T⟩⟨E’⟩
FIRST(TE ′) = FIRST(T) = FIRST(F) = {(, id}

80
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF TABLE BUILDING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id + * () eof
E (1) (1)
E ′

T
T ′

F

For production: (1) ⟨E⟩ → ⟨T⟩⟨E’⟩
FIRST(TE ′) = FIRST(T) = FIRST(F) = {(, id}
Then put the production in M[E , (] and M[E , id]; the rest of
the line is error

80
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF TABLE BUILDING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id + * () eof
E (1) (1)
E ′ (2)
T
T ′

F

For production: (2) ⟨E’⟩ → +⟨T⟩⟨E’⟩
FIRST(+TE ′) = {+}
Then put the production in M[E ′,+]

80
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF TABLE BUILDING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id + * () eof
E (1) (1)
E ′ (2) (3)
T
T ′

F

For production: (3) ⟨E’⟩ → ϵ
FIRST(ϵ) = {ϵ}
FOLLOW(E ′) = {), eof}
Put the production in M[E ′,)]

80
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF TABLE BUILDING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id + * () eof
E (1) (1)
E ′ (2) (3) (3)
T
T ′

F

For production: (3) ⟨E’⟩ → ϵ
FIRST(ϵ) = {ϵ}
FOLLOW(E ′) = {), eof}
Put the production in M[E ′,)]
Put the production in M[E ′, eof]

80
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF TABLE BUILDING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id + * () eof
E (1) (1)
E ′ (2) (3) (3)
T (4) (4)
T ′

F

For production: (4) ⟨T⟩ → ⟨F⟩⟨T’⟩
FIRST(F T ′) = FIRST(F) = {(, id}
Put the production in M[T , (] and M[T , id]

80
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF TABLE BUILDING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id + * () eof
E (1) (1)
E ′ (2) (3) (3)
T (4) (4)
T ′ (5)
F

For production: (5) ⟨T’⟩ → *⟨F⟩⟨T’⟩
FIRST(* F T ′) = {*}
Put the production in M[T ′, *]

80
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF TABLE BUILDING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id + * () eof
E (1) (1)
E ′ (2) (3) (3)
T (4) (4)
T ′ (6) (5) (6) (6)
F

For production: (6) ⟨T’⟩ → ϵ
FIRST(ϵ) = {ϵ}
FOLLOW(T ′) = {+,), eof}
Put the production in M[T ′,+] and M[T ,)]
Put the production in M[T ′, eof]

80
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF TABLE BUILDING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id + * () eof
E (1) (1)
E ′ (2) (3) (3)
T (4) (4)
T ′ (6) (5) (6) (6)
F (7)

For production: (7) ⟨F⟩ → (⟨E⟩)
FIRST((E)) = {(}
Put the production in M[F , (]

80
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF TABLE BUILDING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id + * () eof
E (1) (1)
E ′ (2) (3) (3)
T (4) (4)
T ′ (6) (5) (6) (6)
F (8) (7)

For production: (8) ⟨F⟩ → id
FIRST(id) = {id}
Put the production in M[F , id]

80
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing

Principles
Recursive-descent parsing
LL(1) grammars
Nonrecursive predictive parsing
Error recovery in predictive parsing

Bottom-up parsing
LR(k) parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
81

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53NONRECURSIVE PREDICTIVE PARSING

Nonrecursive predictive parser can be built by maintaining a stack explicitly, rather
than implicitly via recursive calls
Parser mimics a leftmost derivation. If w is the input that has been matched so
far, then the stack holds a sequence of grammar symbols a such that:

S
∗⇒ w α

Table-driven parser has an input buffer, a stack containing a sequence of grammar
symbols, a parsing table, and an output stream

input

Parsing
Table M

Predictive
Parsing
Program

stack

eof

X
Y

Z

82
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ALGORITHM OF THE NONRECURSIVE PREDICTIVE PARSING

Input : A string w , a parsing table M for grammar G , and a start symbol s0
Output : If w is in L(G), a lef-most derivation of w ; otherwise, an error indication

begin
a ← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a ← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . .Yn) then

print (⟨X⟩ → Y1 . . .Yn);
pop (S);
for i ← n to 1 do push (S,Yi);

else
Report an error // M[X , a] is empty;

end

end

end

83
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

E

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

EX

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

EX

E T E'

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

E T E'

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

E T E'

E'

T

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

E T E'

E'

TX

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

E T E'

E'

TX
T F T'

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

E T E'

E'

T F T'

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

E T E'

E'

T F T'

T'

F

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

E T E'

E'

T F T'

T'

FX

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

E T E'

E'

T F T'

T'

FX
F id

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

E T E'

E'

T F T'

T' F id

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

E T E'

E'

T F T'

T' F id
id

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:
a

eof

E T E'

E'

T F T'

T'

X
F id

id

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:

eof

E T E'

E'

T F T'

T' F id

a

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:

eof

E T E'

E'

X
T F T'

T' F id

a

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:

eof

E T E'

E'

X
T F T'

T' F id

a

T'

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:

eof

E T E'

E'

T F T'
F id

a

T'

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:

eof

E T E'

E'

T F T'
F id

a

T'

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:

eof

X

E T E'

E'

T F T'
F id

a

T'

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:

eof

X

E T E'

E'

T F T'
F id

a

T'
E' + T E'

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:

eof

E T E'
T F T'
F id

a

T'
E' + T E'

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF NONRECURSIVE PREDICTIVE PARSING

begin
a← nextInputSymbol;
push (S , eof) ;
push (S , s0) ;
while topOf(S) ̸= eof do

X ← topOf (S) ;
if X = a then

pop (S); a← nextInputSymbol;
else if X is a terminal then

Report an error;
else if M[X , a] = (⟨X⟩ → Y1 . . . Yn) then

print (⟨X⟩ → Y1 . . . Yn);
pop (S);
for i ← n to 1 do push (S, Yi);

else
Report an error;

end

end

end

id + id * id eof

stack: input:

output:

eof

E T E'

E'

T

T F T'
F id

a

T'
E' + T E'

+

id + * () eof
E (1) (1)

E ′ (2) (3) (3)
T (4) (4)

T ′ (6) (5) (6) (6)
F (8) (7)

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

84
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing

Principles
Recursive-descent parsing
LL(1) grammars
Nonrecursive predictive parsing
Error recovery in predictive parsing

Bottom-up parsing
LR(k) parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
85

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53PANIC MODE

Panic-mode error recovery is based on the idea of skipping over symbols on the
input until a token in a selected set of synchronizing tokens appears

Its effectiveness depends on the choice of synchronizing set

The sets should be chosen so that the parser recovers quickly from errors that are
likely to occur in practice

Some heuristics are explained in the following slides

86
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53HEURISTICS FOR PANIC MODE

As a starting point, place all symbols in
FOLLOW(A) into the synchronizing set
for nonterminal A. If we skip tokens

until an element of FOLLOW(A) is seen
and pop A from the stack, it is likely

that parsing can continue

If we add symbols in FIRST(A) to the
synchronizing set for nonterminal A,
then it may be possible to resume

parsing according to A if a symbol in
FIRST(A) appears in the input

It is not enough to use FOLLOW(A) as
the synchronizing set for A. We can add
to the set of a lower-level construct the

symbols that begin higher-level
constructs. For example, we might add
keywords that begin statements to the
synchronizing sets for the nonterminals

generating expressions

87
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53HEURISTICS FOR PANIC MODE (CONT.)

If a terminal on top of the stack cannot
be matched, a simple idea is to pop the
terminal, issue a message saying that the

terminal was inserted, and continue
parsing. In effect, this approach takes
the synchronizing set of a token to

consist of all other tokens

If a nonterminal can generate the empty
string, then the production deriving ϵ

can be used as a default. Doing so may
postpone some error detection, but

cannot cause an error to be missed. This
approach reduces the number of

nonterminals that have to be considered
during error recovery

88
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing
Bottom-up parsing
LR(k) parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion

89
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53BOTTOM-UP PARSING

[K
n
u
th
,
1
9
6
5
,
K
or
en

ja
k
,
1
9
6
9
]

Bottom-Up Parsing

Constructing a parse tree for an input string beginning at the leaves (the bottom) and
working up towards the root

General Principle

Bottom-up parsing is the process of “reducing” a string w to the start symbol of the
grammar

By definition, reduction is the reverse of derivation
The goal of the bottom-up parsing is therefore to construct a derivation in reverse

90
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53TYPE OF BOTTOM-UP PARSING

[K
n
u
th
,
1
9
6
5
,
K
or
en

ja
k
,
1
9
6
9
]

Shift-reduce
Parsing

General form. Attached to the
LR(k) grammar class

Left-to-right input scanning
Rightmost derivation

k input symbol is used for
lookahead to make parsing
action decisions

LR(k) parser is too difficult to be written by hand
We prefer to use automatic parser generators

91
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing
Bottom-up parsing

Reductions
Handle pruning
Shift-reduce parsing
Conflicts during shift-reduce parsing

LR(k) parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion

92
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53PRINCIPLE OF REDUCTION

General Reduction Algorithm

At each reduction step:

Select a specific substring matching the body of a production

Replace the selected substring by the nonterminal at the head of the production

Key Decisions

when to reduce

what production to apply

93
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF REDUCTIONS

Let the grammar: ⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

A possible sequence of reductions is:
id * id⇐ F * id⇐ F * F ⇐ F * F ϵ⇐ F * F T ′ ⇐ F T ′

* idid

* id

id

F *

idid

F F *

idid

F F *

idid

F F T'

id

*id

F

F T'

T'

94
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF REDUCTIONS

Let the grammar: ⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨E’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

A possible sequence of reductions is:
id * id⇐ F * id⇐ F * F ⇐ F * F ϵ⇐ F * F T ′ ⇐ F T ′

⇐ T ⇐ T ϵ⇐ T E ′ ⇐ E

id

*id

F

F T'

T'

T

id

*id

F

F T'

T'

T

id

*id

F

F T'

T'

T E'

id

*id

F

F T'

T'

T E'

E

94
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53HOW TO FIND THE BEST REDUCTIONS?

What is the best sequence of reductions to build the parse tree?

One method is to use the shift-reduce parsing method

Shift-reduce method is based on the handle pruning

95
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing
Bottom-up parsing

Reductions
Handle pruning
Shift-reduce parsing
Conflicts during shift-reduce parsing

LR(k) parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion

96
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53DEFINITION OF A HANDLE

Handle

Substring matching the body of a production, and whose reduction represents one step
along the reverse of a right-most derivation

If S
∗⇒
rm

α A ω ⇒
rm

α β ω then production ⟨A⟩ → β in the position following α is a

handle of αβω

α β ω

A

S

A handle of a right-sentential form γ is a production ⟨A⟩ → β and a position of γ where the
string β may be found, such that replacing β at that position by A produces the previous
right-sentential form in a rightmost derivation of γ

Note that ω must contain only terminal symbols

97
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ALGORITHM OF HANDLE PRUNING

Inputs : A string of terminals ω. A grammar G = ⟨N,Σ,P, S⟩
Output : A sequence of reductions of ω, or an error if no sequence was found
Assumption: w = γn, where γn is the nth right-sentential form of some, yet unknown, rightmost derivation:

S = γ0 ⇒
rm

γ1 ⇒
rm

γ2
∗⇒
rm

γn−1 ⇒
rm

γn = ω

begin
d←[]; f←ω;
while f ̸= S do

if ∃h ∈ f |f = α h β ; β contains only terminals then
if ∃p ∈ G |p = (⟨A⟩ → h) then

f←α p β;
d←[(α h β)].d ;

else
throw(”Cannot find a production for reduction”)

end

else
throw(”Cannot find a handle”)

end

end
return d ;

end

98
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing
Bottom-up parsing

Reductions
Handle pruning
Shift-reduce parsing
Conflicts during shift-reduce parsing

LR(k) parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion

99
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53SHIFT-REDUCE PARSING

Shift-reduce parsing is a form of bottom-up parsing in which a stack holds
grammar symbols and an input buffer holds the rest of the string to be parsed

The handle always appears at the top of the stack just before it is identified as the
handle

100
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53SHIFT-REDUCE OPERATIONS

01

Shift

Shift the next input symbol
onto the top of the stack

02

Reduce

Get string from the stack, and
detect the production to

replace it

101
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53SHIFT-REDUCE OPERATIONS (CONT.)

03

Accept

Successful completion of
parsing

04

Error

Syntax error and call an error
recovery routine

102
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

current

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

current

Shift or Reduce?
Cannot reduce because the stack
is empty.
Then: Shift

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

id

current

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

id

current

Can Reduce?
Reduce with F id

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

current

Can Reduce?
Reduce with F id

F

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

F

Cannot Reduce.
Then Shift.

*

current

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

F

Cannot Reduce.
Then Shift.

*

id

current

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

F
*

current

F
Can Reduce?
Reduce with F id

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

F
*

current

F
Cannot Reduce.
Push before firing an error.

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

F
*

current

F
Can Reduce?
Reduce with T'

T'

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

F

current

Can Reduce?
Reduce with T' * F T'

T'

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

current

Can Reduce?
Reduce with T F T'

T

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

current

Cannot Reduce.
Push before firing an error.

T

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

current

T

Can Reduce?
Reduce with E'

E'

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE PARSING

⟨E⟩ ::= ⟨T⟩ ⟨E’⟩
⟨E’⟩ ::= + ⟨T⟩ ⟨T’⟩

::= ϵ

⟨T⟩ ::= ⟨F⟩ ⟨T’⟩
⟨T’⟩ ::= * ⟨F⟩ ⟨T’⟩

::= ϵ

⟨F⟩ ::= (⟨E⟩)
::= id

id * id eof

stack: input:

actions:

eof

current

Can Reduce?
Reduce with E T E'.
Then Accept.

E

103
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing
Bottom-up parsing

Reductions
Handle pruning
Shift-reduce parsing
Conflicts during shift-reduce parsing

LR(k) parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion

104
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53CONFLICTS DURING SHIFT-REDUCE PARSING

There are context-free grammars for which shift-reduce parsing cannot be used

Every shift-reduce parser can reach a configuration in which the parser, knowing the
entire stack and also the next k input symbols

Shift/reduce Conflict
Cannot decide whether to shift

or to reduce

Reduce/reduce Conflict
Cannot decide which of several

reductions to make

Grammars causing these conflicts are not in the LR(k) class

105
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF SHIFT-REDUCE CONFLICT

Consider the grammar:

⟨statement⟩ ::= if ⟨expression⟩ then ⟨statement⟩
::= if ⟨expression⟩ then ⟨statement⟩ else ⟨statement⟩
::= id

Consider the stack : eof . . . if⟨expression⟩then⟨statement⟩
Consider the input : else . . . eof

We cannot tell whether if⟨expression⟩then⟨statement⟩ is the handle, no matter
what appears below it on the stack. There is a shift/reduce conflict

Depending on what follows the else on the input, it might be correct to reduce
if-then to ⟨statement⟩, or it might be correct to shift else and then to look for
another ⟨statement⟩ to complete the if-then-else

106
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF REDUCE-REDUCE CONFLICT

Consider the grammar with array indexes between parenthesis:

⟨statement⟩ ::= id(⟨parameters⟩)
::= id:=⟨expression⟩

⟨parameters⟩ ::= ⟨parameters⟩,id
::= id

⟨expression⟩ ::= id(⟨expressions⟩)
::= number

⟨expressions⟩ ::= ⟨expressions⟩,⟨expression⟩
::= ⟨expression⟩

Consider the stack : eof . . . id(id)
Consider the input : ,id) . . . eof
It is evident that the id on top of the stack should be reduced, but by which
production?

1 ⟨parameters⟩ → id if p is a procedure
2 ⟨expressions⟩ → id if p is an array

107
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing
Bottom-up parsing
LR(k) parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion

108
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53SIMPLE LR(k) PARSING

[D
eR

em
er
,
1
9
7
1
]

This section introduces a simple LR(k) (or SLR(k)) parsing based on the concepts
previously presented

LR(k) Grammar

Class of grammars that have the following properties:

Left-to-right input scanning
Rightmost derivation

k input symbol is used for lookahead to make parsing action decisions

LR(k) parser is table-driven, as the nonrecursive LL(k) parser

In this chapter, only cases k = 0 and k = 1 are considered

109
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53WHY LR(k) PARSERS?

1 Can be constructed to recognize all programming language constructs
Non-LR context-free grammars exist, but not used for typical
programming-language constructs

2 LR-parsing method is the most general nonbacktracking shift-reduce parsing
method

3 LR parser can detect a syntactic error early
4 For a grammar to be LR(k), we must be able to recognize the occurrence of the

right side of a production in a right-sentential form, with k input symbols of
lookahead
This requirement is far less stringent than that for LL(k) grammars where we
must be able to recognize the use of a production seeing only the first k symbols
of what its right side derives
Thus, it should not be surprising that LR grammars can describe more languages
than LL grammars

110
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing
Bottom-up parsing
LR(k) parsing

Principles
LR(0) automaton
LR parsing algorithm
Building SLR-parsing table
LALR parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
111

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53WHY LR(0) AUTOMATON?

LR(0) automaton helps with shift-reduce decisions

Suppose that the string γ of symbols takes the LR(0) automaton from the start
state I0 to some state Ij

Then, shift on the next input symbol a if state Ij has a transition on a

Otherwise, we choose to reduce
Items in state Ij indicate which production to use

112
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53DEFINITION OF ITEM

LR(0) parser makes shift-reduce decisions by maintaining states to keep track of
where we are in a parse

States represent sets of “items”

Item

LR(0) item (or item) of a grammar G is a production of G with a dot (noted •) at
some position of the body

Production ⟨A⟩ → XYZ generates the four items: ⟨A⟩ ::= • X Y Z

::= X • Y Z

::= X Y • Z

::= X Y Z •
Production ⟨A⟩ → ϵ generates only one item: ⟨A⟩ ::= •

113
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53INFORMAL DEFINITION OF ITEM

Intuitively, an item indicates how much of a production we have seen at a given
point in the parsing process

Examples

1 ⟨A⟩ ::= • X Y Z
we hope to see a string derivable from X Y Z next on the input

2 ⟨A⟩ ::= X • Y Z
we have just seen on the input a string derivable from X and that we hope next
to see a string derivable from Y Z

3 ⟨A⟩ ::= X Y Z •
we have seen the body X Y Z and that it may be time to reduce X Y Z to A

114
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53KERNEL ITEM AND NONKERNEL ITEM

Kernel Item

Initial item, ⟨S’⟩ → ⟨S⟩, and all items whose dots are not at the left end

Nonkernel Item

All items with their dots at the left end, except for ⟨S’⟩ → ⟨S⟩

115
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53SET OF ITEMS

Set of Items in DFA

Each state of the LR(0) automaton represents a set of items in the canonical LR(0)
collection

Canonical LR(0) Collection

Collection of sets of LR(0) items, used as the basis for constructing a deterministic
finite automaton

To construct the canonical LR(0) collection, we define:

1 an augmented grammar

2 the functions CLOSURE and GOTO

116
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53AUGMENTED GRAMMAR

Augmented Grammar

Let G = ⟨N,Σ,P,S⟩
Augmented grammar G ′ of G is defined by ⟨N,Σ,P ∪ (⟨S’⟩ → ⟨S⟩) ,S ′⟩

The purpose of the new starting production is to indicate to the parser when it
should stop parsing and announce acceptance of the input

Acceptance occurs when and only when the parser is about to reduce by
⟨S’⟩ → ⟨S⟩

117
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53CLOSURE: CLOSURE OF ITEM SETS

Input : Set I of items for grammar G = ⟨N,Σ,P,S⟩
Output : CLOSURE(I)

begin
CLOSURE(I) ← I ;
while CLOSURE(I) has been changed do

foreach (⟨A⟩ → α • B β) ∈ CLOSURE(I) do
if (⟨B⟩ → γ) ∈ P then

CLOSURE(I) ← CLOSURE(I) ∪ (⟨B⟩ → • γ) ;
end

end

end

end

118
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF CLOSURE

⟨E’⟩ ::= ⟨E⟩
⟨E⟩ ::= ⟨E⟩ + ⟨T⟩

::= ⟨T⟩
⟨T⟩ ::= ⟨T⟩ * ⟨F⟩

::= ⟨F⟩
⟨F⟩ ::= (⟨E⟩)

::= id

I0
⟨E’⟩ → • ⟨E⟩

I = {(E ′ → • E)} and CLOSURE(I) = I0

119
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF CLOSURE

⟨E’⟩ ::= ⟨E⟩
⟨E⟩ ::= ⟨E⟩ + ⟨T⟩

::= ⟨T⟩
⟨T⟩ ::= ⟨T⟩ * ⟨F⟩

::= ⟨F⟩
⟨F⟩ ::= (⟨E⟩)

::= id

I0
⟨E’⟩ → • ⟨E⟩

I0
⟨E’⟩ → • ⟨E⟩

⟨E⟩ → • ⟨E⟩+⟨T⟩
⟨E⟩ → • ⟨T⟩

Consider E -productions because E is on the right of the dot. Add ⟨E⟩ → • ⟨E⟩+⟨T⟩ and
⟨E⟩ → • ⟨T⟩ to I0

119
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF CLOSURE

⟨E’⟩ ::= ⟨E⟩
⟨E⟩ ::= ⟨E⟩ + ⟨T⟩

::= ⟨T⟩
⟨T⟩ ::= ⟨T⟩ * ⟨F⟩

::= ⟨F⟩
⟨F⟩ ::= (⟨E⟩)

::= id

I0
⟨E’⟩ → • ⟨E⟩

I0
⟨E’⟩ → • ⟨E⟩

⟨E⟩ → • ⟨E⟩+⟨T⟩
⟨E⟩ → • ⟨T⟩

I0
⟨E’⟩ → • ⟨E⟩

⟨E⟩ → • ⟨E⟩ +⟨T⟩
⟨E⟩ → • ⟨T⟩

⟨T⟩ → • ⟨T⟩ * ⟨F⟩
⟨T⟩ → • ⟨F⟩

. . .

Consider E -productions and T -productions because they are both on the right of the dot.
Items for E -productions are already inside I0, but not items for T -productions.

119
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53GOTO

GOTO Function

Closure of the set of all items ⟨A⟩ → α ⟨X⟩ • β
Such that (⟨A⟩ → α • ⟨X⟩ β) ∈ I
Where I is a set of items, and X is a grammar symbol

Intuitively, the GOTO function is used to define the transitions in the LR(0)
automaton for a grammar

States of the automaton corresponds to sets of items, and GOTO(I ,X) specifies
the transition from the state I under input X

120
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF GOTO

⟨E’⟩ ::= ⟨E⟩
⟨E⟩ ::= ⟨E⟩ + ⟨T⟩

::= ⟨T⟩
⟨T⟩ ::= ⟨T⟩ * ⟨F⟩

::= ⟨F⟩
⟨F⟩ ::= (⟨E⟩)

::= id

If I is the set of two items { (⟨E’⟩ → ⟨E⟩ •), (⟨E⟩ → ⟨E⟩ • + ⟨T⟩) }
Then, GOTO(I ,+) = CLOSURE({ (⟨E⟩ → ⟨E⟩ + • ⟨T⟩) } is

⟨E⟩ → ⟨E⟩ + • ⟨T⟩
⟨T⟩ → • ⟨T⟩ * ⟨F⟩
⟨T⟩ → • ⟨F⟩
⟨F⟩ → • (⟨E⟩)
⟨T⟩ → • ⟨id⟩

121
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53LR(0) AUTOMATON

Simple LR (or SLR) parsing constructs LR(0) automaton from the grammar

States of this automaton are the sets of items from the canonical LR(0)
collection, and the transitions are given by the GOTO function

In the following slide, there is an example of LR(0) automaton

Kernel items are in the light-yellow part of the box

Nonkernel items are in the dark-yellow part of the box
Egde represents the transitions given by the function GOTO, where the label is the
token name

122
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF LR(0) AUTOMATON

I
0

E'→ •E
E → •E+T
E → •T
T → •T*F
T → •F
F → •(E)
F → •id

I
1

E'→ E•
E → E•+T

I
6

E → E+•T
T → •T*F
T → •F
F → •(E)
F → •id

I
2

E → T•
T → T•*F

I
5

F → id•

I
7

T → T*•F
F → •(E)
F → •id

I
8

E → E•+T
F → (E•)

I
3

T → F•

I
4

F → (•E)
E → •E+T
E → •T
T → •T*F
T → •F
F → •(E)
F → •id

accept

E +

eof

T

F

(

T

id

T
id

id

id

*

(

(
F

F

F

)

E +

start

123
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ALGORITHM TO COMPUTE THE CANONICAL LR(0) COLLECTION

Input : Augmented grammar G ′

Output : Canonical LR(0) Collection, namely C

begin
C ← CLOSURE({ (⟨S’⟩ → • ⟨S⟩) });
repeat

foreach set of items I ∈ C do
foreach grammar symbol in X do

if GOTO(I ,X) is not empty and not in C then
C ← C ∪ GOTO(I ,X);

end

end

end

until no new sets of items are added to C on a round ;
return C ;

end

124
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing
Bottom-up parsing
LR(k) parsing

Principles
LR(0) automaton
LR parsing algorithm
Building SLR-parsing table
LALR parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
125

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53ALGORITHM FOR LR-PARSING (#1)

input

ACTION

GOTO

LR
Parsing
Program

stack

eof

X
Y

Z

LR parser consists of an input, an output, a stack, a driver program, and a
parsing table that has two parts: ACTION and GOTO

Only the parsing table change from one parser to another

Parsing program reads characters from an input buffer one at a time

It shifts a state; not a symbol. This is a major difference between a LR parser
and a shift-reduce parser

126
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ALGORITHM FOR LR-PARSING (#2)

input

ACTION

GOTO

LR
Parsing
Program

stack

eof

X
Y

Z

Stack holds a sequence of states, s0 s1 . . . sm, where sm is on top 1

All the transition that are entering in a state are labeled with the same symbol
State may be associated to one symbol and only one, except for the start state

1In SLR method, the stack holds the states from the LR(0) automaton; the canonical LR and
LALR methods are similar

127
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ACTION IN THE LR-PARSING TABLE

This function takes as arguments a state si and a terminal a (or eof).

The value of ACTION[si , a] can have one of the four forms:

1 Shift j , where sj is a state
Action taken by the parser effectively shifts input a to the stack, but uses state sj to
represent a

2 Reduce ⟨A⟩ → β
Action of the parser effectively reduces β on the top of the stack to head A

3 Accept
Parser accepts the input and terminates

4 Error
Parser discovers an error and takes some corrective action

128
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53GOTO IN THE LR-PARSING TABLE

The GOTO function, defined on sets of items, is extended to states.

If GOTO[Ii ,A] = Ij , then GOTO also maps a state Ii and a nonterminal A to state
Ij .

129
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ALGORITHM FOR LR-PARSING

Input : An input string w and an LR-parsing table with functions ACTION and GOTO for a grammar G
Output : If w is in L(G), the reduction steps of a bottom-up parse for w ; otherwise, an error indication

begin
S ← [s0]; a ← inputSymbol () ;

stopParser ← false ;
while ¬stopParser do

s ← topOf (S) ;
if ACTION[s, a] = Shift (t) then

push (S, t) ;
a ← inputSymbol () ;

if ACTION[s, a] = Reduce (⟨A⟩ → β) then
pop (S, β) ;
t ← topOf (S) ;
push (S, GOTO(t,A));
print (⟨A⟩ → β) ;

if ACTION[s, a] = Accept then
stopParser ← true ;

else
throw(”No production found”)

end

end

end

130
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing
Bottom-up parsing
LR(k) parsing

Principles
LR(0) automaton
LR parsing algorithm
Building SLR-parsing table
LALR parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
131

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53BUILDING THE SLR-PARSING TABLE

SLR method refers to the parsing table, the SLR table

SLR method begins with LR(0) items and LR(0) automata:

1 Given a grammar G , we augment G to produce G ′, with a new start symbol S ′

2 From G ′, we construct C , the canonical collection of sets of items for G ′ together
with the GOTO function

3 ACTION and GOTO entries in the parsing table are then constructed using the
algorithm in the following slides

4 This algorithm requires us to know FOLLOW(A) for each nonterminal A of the
grammar

132
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ALGORITHM FOR BUILDING THE SLR-PARSING TABLE

Input : Augmented grammar G ′

Output : SLR-parsing table functions ACTION and GOTO for G ′

begin
C ← {I0, I1, . . . , In} // Sets of LR(0) items for G ′ ;
for i ← 1 to n do

if (⟨A⟩ → α • α β) ∈ Ii and GOTO(Ii , a)= Ij then
ACTION[i , a] ← ”Shift j”

else if (⟨A⟩ → α • α) ∈ Ii then
foreach a ∈ FOLLOW(A) and A ̸= S ′ do

ACTION[i , a] ← ”Reduce ⟨A⟩ → α”
end

else if (⟨S’⟩ → ⟨S⟩) ∈ Ii then
ACTION[i , a] ← ”Accept”

else
throw(”G is not SLR(1)”)

end
foreach nonterminal A do

if GOTO(Ii ,A) = Ij then
GOTO(si ,A) ← sj

end

end

end
S0 ← state that corresponds to item ⟨S’⟩ → ⟨S⟩ • ;

end
133

MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar
FIRST and FOLLOW functions
Top-down parsing
Bottom-up parsing
LR(k) parsing

Principles
LR(0) automaton
LR parsing algorithm
Building SLR-parsing table
LALR parsing

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion
134

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53LALR PARSING

[D
eR

em
er
,
1
9
6
9
]

LALR parsing (LookAhead LR parsing) if often used in practice (details in the
reference books)

Tables obtained by LALR methods are significantly smaller than tables obtained
by canonical LR methods

LALR parsers offer many of the advantages of SLR and canonical-LR parsers

They combine the states that have the same kernels (sets of items, ignoring the
associated lookahead sets)

Thus, the number of states is the same as that of the SLR parser, but some
parsing-action conflicts present in the SLR parser may be removed in the LALR
parser

LALR parsers have become the method of choice in practice

135
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC
Overview
Yacc/Bison
JavaCC

5 Conclusion

136
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53PARSER GENERATORS

[J
o
h
n
so
n
,
1
9
7
5
]

Parser generators such as Yacc and its more recent implementation Bison, are
generally LALR parser generators

They permit to facilitate the creation of the front-end of a compiler by generating
the source code from a grammar and a lexical analyzer specification

This section describes two families of parser generators:

Yacc, or Bison, that generates C and C++ parsers
JavaCC, that generates Java parsers

LALR
Parser

Generator

Yacc Program:

file.y

Code
Generator

C Program:

file.tab.c

137
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC
Overview
Yacc/Bison
JavaCC

5 Conclusion

138
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53PROCESS OF YACC

Yacc Program:

file.y

Yacc
Compiler

C Program:

file.tab.c

C Program: file.tab.c

C Program: main.c

C
Compiler

Executable:

a.out

Input Stream
a.out

Parser

output

139
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53STRUCTURE OF A YACC PROGRAM

A Yacc program has the following form:

D e c l a r a t i o n s
%%
Tr a n s l a t i o n r u l e s
%%
Au x i l i a r y f u n c t i o n s

Declarations

C ordinary declarations, between %{ and %}
Declarations of tokens with the command %token

140
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53STRUCTURE OF A YACC PROGRAM

A Yacc program has the following form:

D e c l a r a t i o n s
%%
Tr a n s l a t i o n r u l e s
%%
Au x i l i a r y f u n c t i o n s

Translation rules

Each rule consists of a grammar production and the associated action (note the final semicolon)
<head> : <body1> { <action1> }

| <body2> { <action2> }
. . .

| <bodyn> { <actionn> }
;

140
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53STRUCTURE OF A YACC PROGRAM

A Yacc program has the following form:

D e c l a r a t i o n s
%%
Tr a n s l a t i o n r u l e s
%%
Au x i l i a r y f u n c t i o n s

Auxiliary functions

Auxiliary functions are the section where additional C routines should be put

Note that you must provide the function yylex (), which is invoking the lexical analyzer
(explained later)

140
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF A YACC PROGRAM

%{
#i n c l u d e <c type . h>

%}
%token DIGIT
%%
l i n e : exp r ’\n ’ { p r i n t f (”%d\n” , $1) ; }

;
e xp r : e xp r ’+ ’ term { $$ = $1 + $3 ; }

| term
;

term : term ’* ’ f a c t o r { $$ = $1 * $3 ; }
| f a c t o r
;

f a c t o r : ’ (’ e xp r ’) ’ { $$ = $2 ; }
| DIGIT
;

%%
i n t y y l e x () {

i n t c ;
c = ge t cha r () ;
i f (i s d i g i t (c)) {

y y l v a l = c = ’ 0 ’ ; /* conv e r t cha r to i n t */
r e t u r n DIGIT ;

}
r e t u r n c ;

}

141
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC
Overview
Yacc/Bison

Using Yacc/Bison
Ambiguous grammar
Connecting to Lex
Error recovery

JavaCC

5 Conclusion

142
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53SPECIAL YACC OPERATORS

Yacc provides a set of declarations that may be used to remove grammar
ambiguity.

Associativity and Precedence:

Left associativity: %left <op1> <op2>. . .
Right associativity: %right <op3> <op4>. . .
No associativity: %nonassoc <op5> <op6>. . .
The tokens are given precedences in the order in which they appear in the
declaration part, lower first
Tokens in the same declaration have the same precedence

143
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC
Overview
Yacc/Bison

Using Yacc/Bison
Ambiguous grammar
Connecting to Lex
Error recovery

JavaCC

5 Conclusion

144
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53USE LEX IN CONJONCTION WITH YACC

Lex was designed to produce lexical analyzers that could be used with Yacc

Lex library provides a driver program named yylex()

To use Lex in Yacc, you must remove any definition of yylex() in the Yacc
specification; and replace this definition by:

#include "lex.yy.c"

All the tokens defined in the Yacc declarations are directly available in the Lex
program

145
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC
Overview
Yacc/Bison

Using Yacc/Bison
Ambiguous grammar
Connecting to Lex
Error recovery

JavaCC

5 Conclusion

146
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53ERROR PRODUCTION

In Yacc, error recovery uses a form of error productions

First, you must decides what “major” nonterminals will have error recovery
associated to them

Typical choices are some subset of the nonterminals generating expressions,
statements, blocks, and functions

147
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ERROR RECOVERY FUNCTIONS

yyerror() reports an error

yyerrok() resets the parser to its normal mode of operation

Here, the error production causes the program to suspend normal parsing when a syntax
error is found on an input line

On encountering the error, the parser in the program starts popping symbols from its
stack until it encounters a statethat as a shift action on the token error. Then the input is
read until the new-line character is read. Then the parser reduces error ’\n’ to lines, and
emits the diagnotic message “error message”

l i n e : l i n e s exp r ’ \n ’ { p r i n t f (”%g\n” , $2) ; }
| l i n e s ’ \n ’
| /* empty or e p s i l o n */
| e r r o r ’ \n ’ { y y e r r o r (” e r r o r message ”) ;

y y e r r o k () ; }

148
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC
Overview
Yacc/Bison
JavaCC

5 Conclusion

149
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53PROCESS OF JAVACC

JavaCC Program:

file.jj

JavaCC
Compiler

Java Program:

file.java

Java Program: file.java

Java Program: main.java

Java
Compiler

Executable:

parser.class

Input Stream
parser.class

Parser

output

150
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53STRUCTURE OF A JAVACC PROGRAM

A JavaCC program has the following form:

JavaCC op t i o n s
PARSER BEGIN(<parserName>)
Java c omp i l a t i o n u n i t
PARSER END(<parserName>)
T r a n s l a t i o n r u l e s

Parser Definition

The name that follows “PARSER BEGIN” and “PARSER END” must be the same and
this identifies the name of the generated parser

151
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53STRUCTURE OF A JAVACC PROGRAM

A JavaCC program has the following form:

JavaCC op t i o n s
PARSER BEGIN(<parserName>)
Java c omp i l a t i o n u n i t
PARSER END(<parserName>)
T r a n s l a t i o n r u l e s

Options

JavaCC options permits to control the behavior of the parser

151
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53STRUCTURE OF A JAVACC PROGRAM

A JavaCC program has the following form:

JavaCC op t i o n s
PARSER BEGIN(<parserName>)
Java c omp i l a t i o n u n i t
PARSER END(<parserName>)
T r a n s l a t i o n r u l e s

Java compilation unit

The Java compilation unit is a Java code that must contain at least the declaration of the class
of the parser:
. . .
public class <parser name> {
. . .
}
. . .

151
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53STRUCTURE OF A JAVACC PROGRAM

A JavaCC program has the following form:

JavaCC op t i o n s
PARSER BEGIN(<parserName>)
Java c omp i l a t i o n u n i t
PARSER END(<parserName>)
T r a n s l a t i o n r u l e s

Predefined functions in the parser name class

Two functions are automatically generated inside the parser class:

Token getNextToken(): returns the next available token

Token getToken(int index): returns the ith token ahead

151
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53STRUCTURE OF A JAVACC PROGRAM

A JavaCC program has the following form:

JavaCC op t i o n s
PARSER BEGIN(<parserName>)
Java c omp i l a t i o n u n i t
PARSER END(<parserName>)
T r a n s l a t i o n r u l e s

Translation rules

Java code production (see error recovery for an example)

Regular expression definitions for tokens

Grammar (BNF-like) productions

151
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53DEFINE REGULAR EXPRESSIONS FOR TOKENS

Definition

[<state list>] <kind> [IGNORE CASE] :

{ <regexpr> | <regexpr> | ...}

<state list> specifies the lexer states in which the rule is enabled (default is
DEFAULT)

IGNORE CASE specifies, by its presence, that if the regular expression is case
sensitive or case insensitive

The regular definitions are defined and used as follows, respectively (The ”#”
before the id indicates that this definition exists solely for the purpose of defining
other tokens):
< [#]id : regexpr >
<id>

152
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53TYPES OF REGULAR EXPRESSION DEFINITIONS <KIND>

1 TOKEN: describes tokens in the grammar. The token manager creates a Token
object for each match of such a regular expression and returns it to the parser

2 SPECIAL TOKEN: like tokens, except that they do not have significance during
parsing, ie. the BNF productions ignore them

3 SKIP: simply skipped (ignored) by the token manager

4 MORE: Sometimes it is useful to gradually build up a token to be passed on to
the parser. Matches to this kind of regular expression are stored in a buffer until
the next TOKEN or SPECIAL TOKEN match

153
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ATTRIBUTES OF THE PREDEFINED TOKEN CLASS

int kind
This is the index for this kind of token in the internal representation scheme of
JavaCC. It may be replaced by a constant

int beginLine , beginColumn, endLine, endColumn
The beginning and ending positions of the token as it appeared in the input stream

String image
The lexeme of the token as it appeared in the input stream

Token next
A reference to the next regular (non-special) token from the input stream

154
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53METHODS OF THE PREDEFINED TOKEN CLASS

Object getValue()
An optional attribute value of the Token. Tokens which are not used as syntactic
sugar will often contain meaningful values that will be used later on by the
compiler or interpreter. This attribute value is often different from the image.
Any subclass of Token that actually wants to return a non-null value can override
this method as appropriate

static final Token newToken(int ofKind)
static final Token newToken(int ofKind, String image)
Returns a new token object as its default behavior

155
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53GRAMMAR PRODUCTIONS

Definition

<access modifier> <return type> <identifier> (<parameters>) :

<java block>
{ <expansion choices> }

Name of the non-terminal ⇒ name of the method

parameters and return value depends on the goal of the compiler

Calls to non-terminals ⇒ function calls

Default access modifier: public

156
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53BODIES OF THE PRODUCTIONS

Definition

<access modifier> <return type> <identifier> (<parameters>) :

<java block>
{ <expansion choices> }

Java block: arbitrary Java declarations and code put at the beginning of the
method generated for the Java non-terminal

Expansion choices: a sequence of expansion units. Each nonterminal is written as
a function call. Semantic actions are Java blocks inside this part of the BNF
production

157
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF JAVACC FILE (#1)

PARSER BEGIN(C a l c u l a t o r P a r s e r)
pub l i c c l a s s Ca l c u l a t o r P a r s e r {
}

PARSER END(C a l c u l a t o r P a r s e r)

SKIP : {
” ”

| ”\ t ”
| ”\n”
| ”\ r ”

}

TOKEN :
{

<DIGIT : [0=9]>
}

158
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF JAVACC FILE (#2)

⟨line⟩ ::= ⟨expr⟩
⟨expr⟩ ::= ⟨expr⟩+⟨term⟩

::= ⟨term⟩
⟨term⟩ ::= ⟨term⟩*⟨factor⟩

::= ⟨factor⟩
⟨factor⟩ ::= (⟨expr⟩)

::= digit

p r i v a t e vo id l i n e () :
{

i n t e ;
}
{ e = exp r () { System . out . p r i n t l n (e) ; }
}

p r i v a t e i n t exp r () :
{

i n t e , t ;
}
{ e = exp r () ”+” t = term () { r e t u r n e+t ; }
| t = term () { r e t u r n v ; }

}

159
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53EXAMPLE OF JAVACC FILE (#3)

p r i v a t e i n t term () :
{

i n t t , f ;
}
{ t = term () ”*” f = f a c t o r () { r e t u r n t * f ; }
| f = f a c t o r () { r e t u r n f ; }

}

p r i v a t e i n t f a c t o r () :
{

i n t e , d ;
}
{ ” (” e = expr () ”) ” { r e t u r n e ; }
| d = <DIGIT> { r e t u r n I n t e g e r . p a r s e I n t (d . image) ; }

}

160
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC
Overview
Yacc/Bison
JavaCC

Using JavaCC
Error recovery

5 Conclusion

161
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53ERROR REPORTING WITH JAVACC

Modify file ParseException.java : e.g. changing getMessage method for
customizing error reporting

See Javadoc in ParseException.java and TokenMgrError.java for details

Override or call generateParseException() : (in the generated parser)
it generates an object of type ParseException

162
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53ERROR RECOVERY WITH JAVACC

JavaCC offers two kinds of error recovery:

1 Shallow recovery: recovers if none of the current choices have succeeded in being
selected

2 Deep recovery: is when a choice is selected, but then an error happens sometime
during the parsing of this choice

163
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53SHALLOW ERROR RECOVERY

When no token found, we want to skip until the next given symbol (semi-column)
TOKEN : { <SEMICOLON: ” ; ”> }
p r i v a t e vo id stm () :
{}
{ i f S tm ()
| whi leStm ()

}

TOKEN : { <SEMICOLON: ” ; ”> }
p r i v a t e vo id stm () :
{}
{ i f S tm ()
| whi leStm ()
| e r r o r s k i p t o (SEMICOLON)

}

164
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53DEFINITION OF THE FUNCTION ERROR SKIPTO()

error skipto() is a nonterminal that must be define prior to its first usage

To do so, we must use the following code:

//JAVACODE
vo id e r r o r s k i p t o (i n t k ind) {

Pa r s eExcep t i on e = gen e r a t ePa r s eEx c ep t i o n ()
System . e r r . p r i n t l n (e) ;
Token t ;
do {

t = getNextToken () ;
}
wh i l e (t . k i nd != k ind) ;

}

165
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53DEEP ERROR RECOVERY

When error occurs (even
deeper in the parse tree),
we want to recover

TOKEN : { <SEMICOLON: ” ; ”> }
p r i v a t e vo id stm () :
{}
{ i f S tm ()
| whi leStm ()

}

TOKEN : { <SEMICOLON: ” ; ”> }
p r i v a t e vo id stm () :
{}
{ t r y {

i f S tm ()
| whi leStm ()

} catch (Pa r s eExcep t i on e) {
e r r o r s k i p t o (e , SEMICOLON) ;

}
}

166
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53DEFINITION OF THE FUNCTION ERROR SKIPTO()

//JAVACODE
vo id e r r o r s k i p t o (Pa r s eExcep t i on e , i n t k ind) {

System . out . p r i n t l n (e) ;
Token t ;
do {

t = getNextToken () ;
}
wh i l e (t . k i nd != k ind) ;

}

167
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53OUTLINE

1 Introduction

2 Context-free grammar

3 Parsing with a grammar

4 Generate a syntactic parser with Yacc or JavaCC

5 Conclusion

168
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53KEY CONCEPTS IN THE CHAPTER

Parsers: A parser takes as input tokens from the lexical analyzer and treats the token
names as terminal symbols of a context-free grammar. The parser then constructs a parse
tree for its input sequence of tokens; the parse tree may be constructed figuratively or
literally

Context-Free Grammars: A grammar specifies a set of terminal symbols (inputs), another
set of nonterminals (symbols representing syntactic constructs), and a set of productions,
each of which gives a way in which strings represented by one nonterminal can be
constructed from terminal symbols and strings represented by certain other nonterminals.
A production consists of a head (the nonterminal to be replaced) and a body (the
replacing string of grammar symbols)

Derivations: The process of starting with the start-nonterminal of a grammar and
successively replacing it by the body of one its productions is called derivation. If the
leftmost (or rightmost) nonterminal is always replaced, then the derivation is called
leftmost (resp. rightmost)

169
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Parse Trees: A parse tree is a picture of a derivation, in which there is a node for each
nonterminal that appears in the derivation. The children of a node are the symbols by
which that nonterminal is replaced in the derivation. There is a one-to-one
correspondence between parse trees, leftmost derivation, and rightmost derivations of the
same terminal string

Ambiguity: A grammar for which some terminal string has two or more different parse
tree is said to be ambiguous

Top-Down and Bottom-Up Parsing: Parsers are generally distinguished by whether they
work top-down or bottom-up. Top-down parsers include recursive-descent and LL parsers,
while the most common forms of bottom-up parsers are LR parsers

Design of Grammars: Grammars suitable for top-down parsing often are harder to design
than those used by bottom-up parsers. It is necessary to eliminate left-recursion. We also
must left-factor/group productions for the same nonterminal that have a common prefix
in the body

170
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Recursive-Descent Parsers: These parsers use a procedure for each nonterminal

LL(1) Parsers: A grammar such that it is possible to choose the correct production with
which to expand a given nonterminal, looking only at the next input symbol, is called
LL(1). These grammars allow us to construct a predictive parsing table that gives, for
each nonterminal and each lookahead symbol, the correct choice of production

Shift-Reduce Parsing: Bottom-up parsers generally operate by choosing on the basis of
the next input symbol and the contents of the stack, whether to shift the next input onto
the stack, or to reduce some symbols at the top of the stack. A reduce takes a production
body at the top of the stack and replaces it by the head of the production

Viable Prefixes: In shift-reduce parsing, the stack contents are always a viable prefix, ie. a
prefix of some right-sentential form that ends no further right than the end of the handle
of that right-sentential form. The handler is the substring that was introduced in the last
step of the rightmost derivation of that sentential form

171
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Valid Items: An item is a production with a dot somewhere in the body. An item is valid
for a viable prefix if the production of that item is used to generate the handler, and the
viable prefix includes all those symbols to the left of the dot

LR Parsers: Each of the several kinds of LR parsers operate by first constructing the sets
of valid items (called LR states) for all possible viable prefixes, and keeping track of the
state for each prefix on the stack. The set of valid items guide the shift-reduce parsing
decision

Simple LR Parsers: In an SLR parser, we perform a reduction implied by a valid item with
a dot at the right end, provided the lookahead symbol can follow the head of that
production in some sentential form

Canonical-LR Parsers: This more complex form of LR parser uses items that are
augmented by the set of lookahead symbols that can follow the use of the underlying
production. A canonical-LR parser can avoid some of the parsing-action conflicts that are
present in SLR parsers, but often has many more states than the SLR parser for the same
grammar

172
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53Bibliography of the Chapter (#1)

Backus, J. (1959).
The syntax and semantics of the proposed international algebraic language of the zurich-ACM-GAMM conference.
In Intl. Conf. Information Processing, pages 125–132, Paris. UNESCO.

Birman, A. and Ullman, J. (1973).
Parsing algorithms with backtrack.
Information and Control, 23:1–34.

Cantor, D. (1962).
On the ambiguity problem of backus systems.
In J. ACM, volume 9, pages 477–479. ACM.

Chomsky, N. (1956).
Three models for the description of language.
IRE Trans. on Information Theory, 2(3):113–124.

Dain, J. (1991).
Bibliography on syntax error handling in language translation systems.
Available from the comp.compilers newsgroup.

DeRemer, F. (1969).
Practical Translators for LR(k) Languages.
PhD thesis, MIT, Cambridge, MA.

DeRemer, F. (1971).
Simple LR(k) grammars.
Comm. ACM, 14(7):453–460.

173
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53Bibliography of the Chapter (#2)

Earley, J. (1970).
An efficient context-free parsing algorithm.
Comm. ACM, 13(2):94–102.

Floyd, R. (1962).
On the ambiguity in phase-structure languages.
In Comm. ACM, volume 5, pages 526–534. ACM.

Hoare, C. (1962).
Report on the elliott ALGOLtranslator.
Computer J., 5(2):127–129.

Hopcroft, J., Motwani, R., and Ullman, J. (2006).
Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Boston, MA.

Ingerman, P. (1967).
Panini-backus form suggested.
In Comm. ACM, volume 10, page 137. ACM.

Johnson, S. (1975).
Yacc - yet another compiler compiler.
Computing Science Technical Report 32, Bell Laboratories, Murray Hill, NJ.

Kasami, T. (1965).
An efficient recognition and syntax analysis algorithm for context-free languages.
Technical Report AFCRL-65-768, Air Force Cambridge Research Laboratory, Bedford, MA.

174
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53Bibliography of the Chapter (#3)

Knuth, D. (1965).
On the translation of languages from left to right.
Information and Control, 8(6):607–639.

Korenjak, A. (1969).
A practical method for constructing LR(k) processors.
Comm. ACM, 8(11):613–623.

Lewis, P. and Stearns, R. (1968).
Syntax-directed transduction.
J. ACM, 15(3):465–488.

McClure, R. (1965).
TMG: a syntax-directed compiler.
In 20th ACM Natl. Conf., pages 262–274.

Naur, P. e. a. (1963).
Report on the algorithmic language ALGOL 60.
In Comm. ACM, volume 3, pages 299–314. ACM.

Schorre, D. (1964).
Meta-II: a syntax-oriented compiler writing language.
In 19th ACM Natl. Conf., pages D1.3–1–D1.3–11.

Younger, D. (1967).

Recognition and parsing of context-free languages in time n3.
Information, 10:189–208.

175
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53Bibliography of the Chapter (#4)

176
MEMBRE DE

Introduction Context-free grammar Parsing with a grammar Parser Generators Conclusion

DA53

Chapter 4
Semantic Analysis and Intermediate Code Generation

Stéphane GALLAND

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion

2
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion

3
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53SEMANTIC ANALYSIS AND INTERMEDIATE CODE GENERATION

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Semantic Analyzer

Intermediate Code
Generator

Translation of languages
guided by context-free
grammars

Type checking for source
language

Generation of parse tree or
intermediate code

Parse tree is an abstract
representation of the
program

Intermediate code is
assembly language
independent of any platform

4
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53SYNTAX-DIRECTED TRANSLATION

[S
a
m
el
so
n
a
n
d
B
a
u
er
,
1
9
6
0
,
B
ro
o
ke
r
a
n
d
M
or
ri
s,

1
9
6
2
,
P
a
a
k
k
i,
1
9
9
5
]Syntax-directed translation specifies the values of attributes, attached to the

grammar symbols, by associating semantic rules with the grammar productions

Grammar Productions Semantic Rules

expr ::= ⟨expr⟩ + ⟨term⟩ head.t = expr.t | term.t | ’+’
| ⟨expr⟩-⟨term⟩ head.t = expr.t | term.t | ’-’
| ⟨term⟩ head.t = term.t

term ::= 0 head.t = ’0’
| 1 head.t = ’1’

.
| 9 head.t = ’9’

Semantic rules are program fragments (or semantic actions, between braces)

5
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53TWO TYPES OF SYNTAX-DIRECTED TRANSLATION

Construct a parse tree
Compute the attributes’ values of
the tree nodes

In many cases, translation can be done during parsing, without building an explicit
tree in memory

L-attributed
Translations

L=left

S-attributed
Translations
S=synthesized

6
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53PROGRAM CHECKING

Type Checking

Ensures that operators are
applied to compatible

operands

Syntactic Checking

Apply additional syntactic
check that are not done by

the syntax analyzer

7
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53INTERMEDIATE REPRESENTATION

In translating a program to target machine code, a compiler may construct a
sequence of intermediate representations

Source
Program

High-Level
Intermediate
Representation

Low-Level
Intermediate
Representation

Target
Code

...

High-level representation is
close to the source language,

e.g., syntax tree

Low-level representation are
close to the target machine,
e.g., three-address code

8
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme
Syntax-directed definition
Attributes of the productions
Evaluating a SDD with a parse tree
Dependency graph
S-attributed definition
L-attributed definition

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion

9
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53OUTLINE

1 Introduction

2 Translation scheme
Syntax-directed definition
Attributes of the productions
Evaluating a SDD with a parse tree
Dependency graph
S-attributed definition
L-attributed definition

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion

10
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53SYNTAX-DIRECTED DEFINITION

Syntax-Directed Definition — SDD

Context-free grammar together with attributes and semantic rules

Attribute: is associated with a nonterminal or terminal

Semantic Rule: is associated with production, and a production could be
associated to [0; n] rules

Productions Semantic Rules

expr ::= ⟨expr⟩ + ⟨term⟩ head.t = expr.t | term.t | ’+’
| ⟨expr⟩ - ⟨term⟩ head.t = expr.t | term.t | ’-’
| ⟨term⟩ head.t = term.t

term ::= 0 head.t = ’0’
| 1 head.t = ’1’

.
| 9 head.t = ’9’

11
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53TWO NOTATIONS FOR SYNTAX-DIRECTED DEFINITION

Notation during the lectures:
Productions Semantic Rules

A ::= ⟨B⟩ ⟨C⟩ First part of Rule 1
⟨D⟩ ⟨E⟩ Second part of Rule 1

| ⟨F⟩ Rule 2
G ::= ⟨H⟩ ⟨I⟩ ⟨J⟩ Rule 3

Notation during the tutorial sessions and labworks:
⟨A⟩ → ⟨B⟩ ⟨C⟩ { First part of Rule 1 } ⟨D⟩ ⟨E⟩ { Second part of

Rule 1 }
| ⟨F⟩ { Rule 2 }

⟨G⟩ → ⟨H⟩ ⟨I⟩ ⟨J⟩ { Rule 3 }

12
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme
Syntax-directed definition
Attributes of the productions
Evaluating a SDD with a parse tree
Dependency graph
S-attributed definition
L-attributed definition

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion

13
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53ATTRIBUTES

Attribute

Any quantity associated with a programming construct (nonterminal or terminal)

Examples

Data types, number of instructions, line of the first occurrence of an identifier. . .

14
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53NOTATION FOR ATTRIBUTES

In this lecture, attributes are written following one of the notations:

<terminal>.<attribute name>

<nonterminal>.<attribute name>

Keyword “head” represents the nonterminal in the production’s head
If the same nonterminal is present many times in the body, the attribute’s prefix is
indexed by the position of the nonterminal in this body (see green example below)

expr ::= ⟨expr⟩ + ⟨expr⟩ head.t = expr1.t + expr2.t
| ⟨expr⟩ - ⟨expr⟩ head.t = expr1.t - expr2.t
| ⟨term⟩ head.t = term.t

term ::= 0 head.t = 0
| 1 head.t = 1

.
| 9 head.t = 9

15
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53SYNTHETIZED AND INHERITED ATTRIBUTES

[K
n
u
th
,
1
9
6
8
]

Synthesized Attribute

Attribute for a nonterminal A head at a parse-tree node N, defined in a semantic rule
associated with the production at N

Synthetized attribute is defined by a semantic rule

Inherited Attribute

Attribute for a nonterminal B in the body at a parse-tree node N, defined in a
semantic rule associated with the production at the parent of N

Inherited attribute is read in a semantic rule

16
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme
Syntax-directed definition
Attributes of the productions
Evaluating a SDD with a parse tree
Dependency graph
S-attributed definition
L-attributed definition

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion

17
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53EVALUATING A SDD WITH A PARSE TREE

To visualize the translation specified by an SDD, it helps to work with parse trees

Parse tree: representation of the grammar derivations

Annotated Parse Tree: parse tree with attributes

Parse tree ̸= Syntax tree (source program representation, see slides later)

Depth-first iteration on the parse tree enables to execute the semantic rules in the
right order, i.e., based on attributes’ dependencies (see later)

18
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF EVALUATION

*

T.val=?

F.val=?

digit.lexval=?

T'.lval=?
T'.val=?

F.val=?

digit.lexval=?

T'.lval=?
T'.val=?

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= ⟨digit⟩ head.val = digit.lexval

Input: 3 * 5

19
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF EVALUATION

*

T.val=?

F.val=?

digit.lexval=?

T'.lval=?
T'.val=?

F.val=?

digit.lexval=?

T'.lval=?
T'.val=?

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= ⟨digit⟩ head.val = digit.lexval

Input: 3 * 5

19
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF EVALUATION

*

T.val=?

F.val=?

digit.lexval=?

T'.lval=?
T'.val=?

F.val=?

digit.lexval=?

T'.lval=?
T'.val=?

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= ⟨digit⟩ head.val = digit.lexval

Input: 3 * 5

19
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF EVALUATION

*

T.val=?

F.val=?

digit.lexval=3

T'.lval=?
T'.val=?

F.val=?

digit.lexval=?

T'.lval=?
T'.val=?

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= ⟨digit⟩ head.val = digit.lexval

Input: 3 * 5

19
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF EVALUATION

*

T.val=?

F.val=3

digit.lexval=3

T'.lval=?
T'.val=?

F.val=?

digit.lexval=?

T'.lval=?
T'.val=?

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= ⟨digit⟩ head.val = digit.lexval

Input: 3 * 5

19
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF EVALUATION

*

T.val=?

F.val=3

digit.lexval=3

T'.lval=3
T'.val=?

F.val=?

digit.lexval=?

T'.lval=?
T'.val=?

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= ⟨digit⟩ head.val = digit.lexval

Input: 3 * 5

19
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF EVALUATION

*

T.val=?

F.val=3

digit.lexval=3

T'.lval=3
T'.val=?

F.val=?

digit.lexval=?

T'.lval=?
T'.val=?

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= ⟨digit⟩ head.val = digit.lexval

Input: 3 * 5

19
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF EVALUATION

*

T.val=?

F.val=3

digit.lexval=3

T'.lval=3
T'.val=?

F.val=?

digit.lexval=?

T'.lval=?
T'.val=?

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= ⟨digit⟩ head.val = digit.lexval

Input: 3 * 5

19
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF EVALUATION

*

T.val=?

F.val=3

digit.lexval=3

T'.lval=3
T'.val=?

F.val=?

digit.lexval=5

T'.lval=?
T'.val=?

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= ⟨digit⟩ head.val = digit.lexval

Input: 3 * 5

19
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF EVALUATION

*

T.val=?

F.val=3

digit.lexval=3

T'.lval=3
T'.val=?

F.val=5

digit.lexval=5

T'.lval=?
T'.val=?

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= ⟨digit⟩ head.val = digit.lexval

Input: 3 * 5

19
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF EVALUATION

*

T.val=?

F.val=3

digit.lexval=3

T'.lval=3
T'.val=?

F.val=5

digit.lexval=5

T'.lval=15
T'.val=?

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= ⟨digit⟩ head.val = digit.lexval

Input: 3 * 5

19
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF EVALUATION

*

T.val=?

F.val=3

digit.lexval=3

T'.lval=3
T'.val=?

F.val=5

digit.lexval=5

T'.lval=15
T'.val=15

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= ⟨digit⟩ head.val = digit.lexval

Input: 3 * 5

19
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF EVALUATION

*

T.val=?

F.val=3

digit.lexval=3

T'.lval=3
T'.val=15

F.val=5

digit.lexval=5

T'.lval=15
T'.val=15

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= ⟨digit⟩ head.val = digit.lexval

Input: 3 * 5

19
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF EVALUATION

*

T.val=15

F.val=3

digit.lexval=3

T'.lval=3
T'.val=15

F.val=5

digit.lexval=5

T'.lval=15
T'.val=15

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= ⟨digit⟩ head.val = digit.lexval

Input: 3 * 5

19
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53PROBLEM OF THE EVALUATION ORDER

How to determine the correct
sequence of evaluations of the
semantic rules’ lines?

Introduction of a graph of
dependencies between the attributes

20
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme
Syntax-directed definition
Attributes of the productions
Evaluating a SDD with a parse tree
Dependency graph
S-attributed definition
L-attributed definition

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion

21
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53DEPENDENCY GRAPH

[K
n
u
th
,
1
9
6
8
]

Dependency Graph

Flow of information among the attribute instances in a particular parse tree

Node: For each parse-tree node labeled by grammar symbol X , the dependency
graph has a node for each attribute associated with X

Edge: Between two attribute instances: the value of the first is needed to
compute the value of the second

22
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF ATOMIC DEPENDENCY GRAPHS

T' lvalval

T val

F val T' lvalvalF val*

T' lvalval T' lvalval F val

digit

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= digit head.val = digit.lexval

23
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF ATOMIC DEPENDENCY GRAPHS

T' lvalval

T val

F val T' lvalvalF val*

T' lvalval T' lvalval F val

digit

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= digit head.val = digit.lexval

23
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF ATOMIC DEPENDENCY GRAPHS

T' lvalval

T val

F val T' lvalvalF val*

T' lvalval T' lvalval F val

digit

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= digit head.val = digit.lexval

23
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF ATOMIC DEPENDENCY GRAPHS

T' lvalval

T val

F val T' lvalvalF val*

T' lvalval T' lvalval F val

digit

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= digit head.val = digit.lexval

23
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF ATOMIC DEPENDENCY GRAPHS

T' lvalval

T val

F val T' lvalvalF val*

T' lvalval T' lvalval F val

digit

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= digit head.val = digit.lexval

23
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF DEPENDENCY GRAPH ON INPUT

T' lvalvalF val*

T' lvalval

T val

F val

digit

digit

T ::= ⟨F⟩ ⟨T’⟩ T’.lval = F.val
head.val = T’.val

T ′ ::= * ⟨F⟩ ⟨T’⟩ T’.lval = head.lval * F.val
head.val = T’.val

| ϵ head.val = head.lval
F ::= digit head.val = digit.lexval

Input: 3 * 5

24
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53ORDER OF THE ATTRIBUTES

[K
n
u
th
,
1
9
6
8
]

Order of the attributes

Let N1,N2, . . . ,Nk the evaluation sequence of the dependency graph’s nodes
Such that i < j =⇒ ∃ an edge from Ni to Nj

Such an ordering embeds a directed graph into a linear order, and is called
a topological sort of the graph

25
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53PROBLEM TO DETERMINE THE ORDER OF THE ATTRIBUTES

[K
n
u
th
,
1
9
6
8
,
Ja

za
ye
ri
et

a
l.
,
1
9
7
5
]

If there is any cycle in the graph, then there are no topological sorts, i.e.,
there is no way to evaluate the SDD on the parse tree

Given a SDD, it is very hard to cycle

Translations can be implemented using classes of SDD that guarantee an
evaluation order, i.e., without cycle
Two classes could be used:

1 S-attributed definition (bottom-up)

2 L-attributed definition (top-down)

26
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme
Syntax-directed definition
Attributes of the productions
Evaluating a SDD with a parse tree
Dependency graph
S-attributed definition
L-attributed definition

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion

27
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53S-ATTRIBUTED DEFINITION

[I
ro
n
s,

1
9
6
1
]

S-Attributed Definition

SDD in which all the attributes are synthesized

S-attributed definitions can be implemented during bottom-up parsing, since a
bottom-up parse corresponds to a postorder traversal of the parse tree

28
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme
Syntax-directed definition
Attributes of the productions
Evaluating a SDD with a parse tree
Dependency graph
S-attributed definition
L-attributed definition

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion

29
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53L-ATTRIBUTED DEFINITION

[L
ew

is
et

a
l.
,
1
9
7
4
]

L-Attributed Definition

SDD in which, between the attributes associated with a production body, dependency-graph edges can
go from left to right, but not from right to left

Each attribute must be:

Synthesized, or

Inherited, with the rules limited as follows.

Suppose a production ⟨A⟩ → X1X2 . . .Xn, and an inherited attribute Xi .a. The rule may uses

only:

a) Inherited attributes associated with the head A.
b) Either inherited or synthesized attributes associated with the occurrences of symbols

X1X2 . . .Xi−1 located to the left of Xi

c) Inherited or synthesized attributes associated with this occurrence of Xi itself, but only in
such a way that there are no cycle in a graph dependency formed by the attributes of this X

30
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph
Syntax tree
Directed acyclic graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion

31
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53SYNTAX TREE AS INTERMEDIATE REPRESENTATION

Since some compilers use syntax tree as an intermediate representation, a
common form of SDD turns its input string into a tree

To complete the translation to intermediate code, the compiler may then walk the
syntax tree, using another set of rules than the parse tree

32
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph
Syntax tree

Definition
Building from S-attributed definition
Building from L-attributed definition

Directed acyclic graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion 33
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53SYNTAX TREE

Syntax Tree

Tree defined as ⟨N,C ⟩, where:
N is the set of nodes;
Each node n ∈ N represents a language construct

C : N → PN is the function that maps a node to its child nodes;
Each child node c ∈ C (n) is one of the meaningful components of n

Implementation Notes

Each object representing n has a field that is the label of the node, and the
following additional fields:

If the node is a leaf, the lexical value for the leaf
If the node is not a leaf, all the children are stored in individual fields

34
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF A SYNTAX TREE

This is the syntax tree for the statement:
a := 3 + (6 * 7)

+

3 *

6 7

:=

a

35
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph
Syntax tree

Definition
Building from S-attributed definition
Building from L-attributed definition

Directed acyclic graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion 36
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53S-ATTRIBUTED DEFINITION FOR BUILDING A SYNTAX TREE

E ::= ⟨E⟩ + ⟨T⟩ head.node = new Node(”+”, E.node, T.node)
| ⟨E⟩ - ⟨T⟩ head.node = new Node(”=”, E.node, T.node)
| ⟨T⟩ head.node = T.node

T ::= (⟨E⟩) head.node = E.node
| id head.node = new Leaf(id, id.lexeme)
| num head.node = new Leaf(num, num.value)

Semantic rules contain the creation of the syntax tree nodes

Root of the syntax tree becomes E.node

Annotated parse tree is implicitly defined by the grammar rules and not
directly built by the compiler

37
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E node

id

E node

E node

T node

T node

T node

id

num

-

+

E ::= ⟨E⟩ + ⟨T⟩ head.node = new Node(”+”, E.node, T.node)
| ⟨E⟩ - ⟨T⟩ head.node = new Node(”=”, E.node, T.node)
| ⟨T⟩ head.node = T.node

T ::= (⟨E⟩) head.node = E.node
| id head.node = new Leaf(id, id.lexeme)
| num head.node = new Leaf(num, num.value)

Input: a - 4 + c

38
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E node

id

E node

E node

T node

T node

T node

id

num

-

+

E ::= ⟨E⟩ + ⟨T⟩ head.node = new Node(”+”, E.node, T.node)
| ⟨E⟩ - ⟨T⟩ head.node = new Node(”=”, E.node, T.node)
| ⟨T⟩ head.node = T.node

T ::= (⟨E⟩) head.node = E.node
| id head.node = new Leaf(id, id.lexeme)
| num head.node = new Leaf(num, num.value)

Input: a - 4 + c

38
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E node

id

E node

E node

T node

T node

T node

id

num

-

+

E ::= ⟨E⟩ + ⟨T⟩ head.node = new Node(”+”, E.node, T.node)
| ⟨E⟩ - ⟨T⟩ head.node = new Node(”=”, E.node, T.node)
| ⟨T⟩ head.node = T.node

T ::= (⟨E⟩) head.node = E.node
| id head.node = new Leaf(id, id.lexeme)
| num head.node = new Leaf(num, num.value)

Input: a - 4 + c

38
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E node

id

E node

E node

T node

T node

T node

id

num

-

+

id

a in symbol table

E ::= ⟨E⟩ + ⟨T⟩ head.node = new Node(”+”, E.node, T.node)
| ⟨E⟩ - ⟨T⟩ head.node = new Node(”=”, E.node, T.node)
| ⟨T⟩ head.node = T.node

T ::= (⟨E⟩) head.node = E.node
| id head.node = new Leaf(id, id.lexeme)
| num head.node = new Leaf(num, num.value)

Input: a - 4 + c

38
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E node

id

E node

E node

T node

T node

T node

id

num

-

+

id

a in symbol table

E ::= ⟨E⟩ + ⟨T⟩ head.node = new Node(”+”, E.node, T.node)
| ⟨E⟩ - ⟨T⟩ head.node = new Node(”=”, E.node, T.node)
| ⟨T⟩ head.node = T.node

T ::= (⟨E⟩) head.node = E.node
| id head.node = new Leaf(id, id.lexeme)
| num head.node = new Leaf(num, num.value)

Input: a - 4 + c

38
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E node

id

E node

E node

T node

T node

T node

id

num

-

+

id

a in symbol table

num 4

E ::= ⟨E⟩ + ⟨T⟩ head.node = new Node(”+”, E.node, T.node)
| ⟨E⟩ - ⟨T⟩ head.node = new Node(”=”, E.node, T.node)
| ⟨T⟩ head.node = T.node

T ::= (⟨E⟩) head.node = E.node
| id head.node = new Leaf(id, id.lexeme)
| num head.node = new Leaf(num, num.value)

Input: a - 4 + c

38
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E node

id

E node

E node

T node

T node

T node

id

num

-

+

id

a in symbol table

num 4

-

E ::= ⟨E⟩ + ⟨T⟩ head.node = new Node(”+”, E.node, T.node)
| ⟨E⟩ - ⟨T⟩ head.node = new Node(”=”, E.node, T.node)
| ⟨T⟩ head.node = T.node

T ::= (⟨E⟩) head.node = E.node
| id head.node = new Leaf(id, id.lexeme)
| num head.node = new Leaf(num, num.value)

Input: a - 4 + c

38
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E node

id

E node

E node

T node

T node

T node

id

num

-

+

id

a in symbol table

num 4

- id

c in symbol table

E ::= ⟨E⟩ + ⟨T⟩ head.node = new Node(”+”, E.node, T.node)
| ⟨E⟩ - ⟨T⟩ head.node = new Node(”=”, E.node, T.node)
| ⟨T⟩ head.node = T.node

T ::= (⟨E⟩) head.node = E.node
| id head.node = new Leaf(id, id.lexeme)
| num head.node = new Leaf(num, num.value)

Input: a - 4 + c

38
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E node

id

E node

E node

T node

T node

T node

id

num

-

+

id

a in symbol table

num 4

- id

c in symbol table

+

E ::= ⟨E⟩ + ⟨T⟩ head.node = new Node(”+”, E.node, T.node)
| ⟨E⟩ - ⟨T⟩ head.node = new Node(”=”, E.node, T.node)
| ⟨T⟩ head.node = T.node

T ::= (⟨E⟩) head.node = E.node
| id head.node = new Leaf(id, id.lexeme)
| num head.node = new Leaf(num, num.value)

Input: a - 4 + c

38
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph
Syntax tree

Definition
Building from S-attributed definition
Building from L-attributed definition

Directed acyclic graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion 39
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53L-ATTRIBUTED DEFINITION FOR BUILDING A SYNTAX TREE

E ::= ⟨T⟩ ⟨E’⟩ E’.inherited = T.node
head.node = E’.synthesized

E ′ ::= + ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”+”, head.inherited, T.node)
head.synthesized = E’.synthesized

| - ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”-”, head.inherited, T.node)
head.synthesized = E’.synthesized

| ϵ head.synthesized = head.inherited
T ::= (⟨E⟩) head.node = E.node

| id head.node = new Leaf(”id”, id.lexeme)
| num head.node = new Leaf(”num”, num.lexeme)

Production Attribute Description
E node Global syntax tree node
E ′ inherited Node computed by production in the parent’s

node
synthesized Intermediate node computed by the current

production
T node Node of an atomic expression

40
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E ::= ⟨T⟩ ⟨E’⟩ E’.inherited = T.node
head.node = E’.synthesized

E ′ ::= + ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”+”, head.inherited, T.node)
head.synthesized = E’.synthesized

| - ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”-”, head.inherited, T.node)
head.synthesized = E’.synthesized

| ϵ head.synthesized = head.inherited
T ::= (⟨E⟩) head.node = E.node

| id head.node = new Leaf(”id”, id.lexeme)
| num head.node = new Leaf(”num”, num.lexeme)

Input: a - 4 + c

T node

id

+ E' syninh

E node

id

E' syninhT node

T node

num

- E' syninh

41
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E ::= ⟨T⟩ ⟨E’⟩ E’.inherited = T.node
head.node = E’.synthesized

E ′ ::= + ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”+”, head.inherited, T.node)
head.synthesized = E’.synthesized

| - ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”-”, head.inherited, T.node)
head.synthesized = E’.synthesized

| ϵ head.synthesized = head.inherited
T ::= (⟨E⟩) head.node = E.node

| id head.node = new Leaf(”id”, id.lexeme)
| num head.node = new Leaf(”num”, num.lexeme)

Input: a - 4 + c

T node

id

+ E' syninh

E node

id

E' syninhT node

T node

num

- E' syninh

41
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E ::= ⟨T⟩ ⟨E’⟩ E’.inherited = T.node
head.node = E’.synthesized

E ′ ::= + ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”+”, head.inherited, T.node)
head.synthesized = E’.synthesized

| - ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”-”, head.inherited, T.node)
head.synthesized = E’.synthesized

| ϵ head.synthesized = head.inherited
T ::= (⟨E⟩) head.node = E.node

| id head.node = new Leaf(”id”, id.lexeme)
| num head.node = new Leaf(”num”, num.lexeme)

Input: a - 4 + c

T node

id

+ E' syninh

E node

id

E' syninhT node

T node

num

- E' syninh1

2
3

4

5
6

7

8

9

10

11

12

13

41
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E ::= ⟨T⟩ ⟨E’⟩ E’.inherited = T.node
head.node = E’.synthesized

E ′ ::= + ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”+”, head.inherited, T.node)
head.synthesized = E’.synthesized

| - ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”-”, head.inherited, T.node)
head.synthesized = E’.synthesized

| ϵ head.synthesized = head.inherited
T ::= (⟨E⟩) head.node = E.node

| id head.node = new Leaf(”id”, id.lexeme)
| num head.node = new Leaf(”num”, num.lexeme)

Input: a - 4 + c

T node

id

+ E' syninh

E node

id

E' syninhT node

T node

num

- E' syninh1

2
3

4

5
6

7

8

9

10

11

12

13

id

a in symbol table

41
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E ::= ⟨T⟩ ⟨E’⟩ E’.inherited = T.node
head.node = E’.synthesized

E ′ ::= + ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”+”, head.inherited, T.node)
head.synthesized = E’.synthesized

| - ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”-”, head.inherited, T.node)
head.synthesized = E’.synthesized

| ϵ head.synthesized = head.inherited
T ::= (⟨E⟩) head.node = E.node

| id head.node = new Leaf(”id”, id.lexeme)
| num head.node = new Leaf(”num”, num.lexeme)

Input: a - 4 + c

T node

id

+ E' syninh

E node

id

E' syninhT node

T node

num

- E' syninh1

2
3

4

5
6

7

8

9

10

11

12

13

id

a in symbol table

41
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E ::= ⟨T⟩ ⟨E’⟩ E’.inherited = T.node
head.node = E’.synthesized

E ′ ::= + ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”+”, head.inherited, T.node)
head.synthesized = E’.synthesized

| - ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”-”, head.inherited, T.node)
head.synthesized = E’.synthesized

| ϵ head.synthesized = head.inherited
T ::= (⟨E⟩) head.node = E.node

| id head.node = new Leaf(”id”, id.lexeme)
| num head.node = new Leaf(”num”, num.lexeme)

Input: a - 4 + c

T node

id

+ E' syninh

E node

id

E' syninhT node

T node

num

- E' syninh1

2
3

4

5
6

7

8

9

10

11

12

13

id

a in symbol table

num 4

41
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E ::= ⟨T⟩ ⟨E’⟩ E’.inherited = T.node
head.node = E’.synthesized

E ′ ::= + ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”+”, head.inherited, T.node)
head.synthesized = E’.synthesized

| - ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”-”, head.inherited, T.node)
head.synthesized = E’.synthesized

| ϵ head.synthesized = head.inherited
T ::= (⟨E⟩) head.node = E.node

| id head.node = new Leaf(”id”, id.lexeme)
| num head.node = new Leaf(”num”, num.lexeme)

Input: a - 4 + c

T node

id

+ E' syninh

E node

id

E' syninhT node

T node

num

- E' syninh1

2
3

4

5
6

7

8

9

10

11

12

13

id

a in symbol table

num 4

-

41
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E ::= ⟨T⟩ ⟨E’⟩ E’.inherited = T.node
head.node = E’.synthesized

E ′ ::= + ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”+”, head.inherited, T.node)
head.synthesized = E’.synthesized

| - ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”-”, head.inherited, T.node)
head.synthesized = E’.synthesized

| ϵ head.synthesized = head.inherited
T ::= (⟨E⟩) head.node = E.node

| id head.node = new Leaf(”id”, id.lexeme)
| num head.node = new Leaf(”num”, num.lexeme)

Input: a - 4 + c

T node

id

+ E' syninh

E node

id

E' syninhT node

T node

num

- E' syninh1

2
3

4

5
6

7

8

9

10

11

12

13

id

a in symbol table

num 4

-

id

c in symbol table

41
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E ::= ⟨T⟩ ⟨E’⟩ E’.inherited = T.node
head.node = E’.synthesized

E ′ ::= + ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”+”, head.inherited, T.node)
head.synthesized = E’.synthesized

| - ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”-”, head.inherited, T.node)
head.synthesized = E’.synthesized

| ϵ head.synthesized = head.inherited
T ::= (⟨E⟩) head.node = E.node

| id head.node = new Leaf(”id”, id.lexeme)
| num head.node = new Leaf(”num”, num.lexeme)

Input: a - 4 + c

T node

id

+ E' syninh

E node

id

E' syninhT node

T node

num

- E' syninh1

2
3

4

5
6

7

8

9

10

11

12

13

id

a in symbol table

num 4

-

id

c in symbol table

+

41
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E ::= ⟨T⟩ ⟨E’⟩ E’.inherited = T.node
head.node = E’.synthesized

E ′ ::= + ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”+”, head.inherited, T.node)
head.synthesized = E’.synthesized

| - ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”-”, head.inherited, T.node)
head.synthesized = E’.synthesized

| ϵ head.synthesized = head.inherited
T ::= (⟨E⟩) head.node = E.node

| id head.node = new Leaf(”id”, id.lexeme)
| num head.node = new Leaf(”num”, num.lexeme)

Input: a - 4 + c

T node

id

+ E' syninh

E node

id

E' syninhT node

T node

num

- E' syninh1

2
3

4

5
6

7

8

9

10

11

12

13

id

a in symbol table

num 4

-

id

c in symbol table

+

41
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E ::= ⟨T⟩ ⟨E’⟩ E’.inherited = T.node
head.node = E’.synthesized

E ′ ::= + ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”+”, head.inherited, T.node)
head.synthesized = E’.synthesized

| - ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”-”, head.inherited, T.node)
head.synthesized = E’.synthesized

| ϵ head.synthesized = head.inherited
T ::= (⟨E⟩) head.node = E.node

| id head.node = new Leaf(”id”, id.lexeme)
| num head.node = new Leaf(”num”, num.lexeme)

Input: a - 4 + c

T node

id

+ E' syninh

E node

id

E' syninhT node

T node

num

- E' syninh1

2
3

4

5
6

7

8

9

10

11

12

13

id

a in symbol table

num 4

-

id

c in symbol table

+

41
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E ::= ⟨T⟩ ⟨E’⟩ E’.inherited = T.node
head.node = E’.synthesized

E ′ ::= + ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”+”, head.inherited, T.node)
head.synthesized = E’.synthesized

| - ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”-”, head.inherited, T.node)
head.synthesized = E’.synthesized

| ϵ head.synthesized = head.inherited
T ::= (⟨E⟩) head.node = E.node

| id head.node = new Leaf(”id”, id.lexeme)
| num head.node = new Leaf(”num”, num.lexeme)

Input: a - 4 + c

T node

id

+ E' syninh

E node

id

E' syninhT node

T node

num

- E' syninh1

2
3

4

5
6

7

8

9

10

11

12

13

id

a in symbol table

num 4

-

id

c in symbol table

+

41
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF SYNTAX TREE BUILDING

E ::= ⟨T⟩ ⟨E’⟩ E’.inherited = T.node
head.node = E’.synthesized

E ′ ::= + ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”+”, head.inherited, T.node)
head.synthesized = E’.synthesized

| - ⟨T⟩ ⟨E’⟩ E’.inherited = new Node(”-”, head.inherited, T.node)
head.synthesized = E’.synthesized

| ϵ head.synthesized = head.inherited
T ::= (⟨E⟩) head.node = E.node

| id head.node = new Leaf(”id”, id.lexeme)
| num head.node = new Leaf(”num”, num.lexeme)

Input: a - 4 + c

T node

id

+ E' syninh

E node

id

E' syninhT node

T node

num

- E' syninh1

2
3

4

5
6

7

8

9

10

11

12

13

id

a in symbol table

num 4

-

id

c in symbol table

+

41
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph
Syntax tree
Directed acyclic graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion

42
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53DIRECTED ACYCLIC GRAPH

Nodes in a syntax tree represent language constructs in the source program

Children of a node represent the meaningful components of a construct

Directed Acyclic Graph (DAG)

DAG represents the language constructs in the source program
Ensures that a construct is present only one time in the DAG

The difference between syntax tree and DAG is that the DAG node may have
more than one parent

Consequently, a subexpression is repeated in a tree; and shared in a DAG

43
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF DIRECTED ACYCLIC GRAPH

a + a * (b - c) + (b - c) * d

*

a -

b c

+

a d

b c

*

-

+

Syntax Tree

44
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF DIRECTED ACYCLIC GRAPH

a + a * (b - c) + (b - c) * d

*

a -

b c

+

a d

b c

*

-

+

Syntax Tree

Same subexpressions
are duplicated in the tree

44
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF DIRECTED ACYCLIC GRAPH

a + a * (b - c) + (b - c) * d

*

a -

b c

+

a d

b c

*

-

+

Syntax Tree

*

a -

b c

+

d

*

+

DAG

44
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53VALUE-NUMBER REPRESENTATION FOR THE DAG

Often, the nodes of a DAG are stored in an array of records (also true for a syntax tree)

+

a 10

= 1 id to symbol a
2 num 10
3 + 1 2
4 = 1 3

s t r u c t {
i n t t o k e n i d ;
union {

uns igned i n t s ymbo l i nd ex ;
double f v a l u e ;
l ong l v a l u e ;
s t r u c t {

uns igned i n t l e f t ;
uns igned i n t r i g h t ;

} operands ;
} a t t r ;

} Record ;

Each node of the DAG is referred by its index in the table; its value number

Let the signature of an interior node be the triple ⟨op, l , r⟩, where op is the label, l its left child’s
value number, and r its right child’s value number. l and r are set to 0 when there is no child

45
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53BUILDING A DAG

Inputs : Label op, node l , and node r , DAG D
Output : The value number of a node in the array

with signature ⟨op, l , r⟩
begin

M ← 0 ;
for i ← 1 to |D| do

c ← Di ;
if c = ⟨op, l , r⟩ then

M ← i
end

end
if M ̸= 0 then

return M
else

i ← |D| ;
D ← D ∪ ⟨op, l , r⟩ ;
return i

end

end

Inefficient approach for
searching
Use an hash table in place
of the array for D

46
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code
Language basics
Quadruple form
Triple form
Indirect triple form
Static single-assignment form

5 Code generation of variables

6 Code generation of statements

7 Conclusion 47
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53LEVEL OF INTERMEDIATE REPRESENTATION

[S
tr
o
n
g
et

a
l.
,
1
9
5
8
,
W

ir
th
,
1
9
7
1
,
Jo

h
n
so
n
,
1
9
7
9
,
R
it
ch

ie
,
1
9
7
9
]

High-level representation is
close to the source language,

e.g., syntax tree

Low-level representation are
close to the target machine

Source
Program

High-Level
Intermediate
Representation

Low-Level
Intermediate
Representation

Target
Code

...

The three-address code is a form of low-level intermediate representation that is
close to the assembler languages

Rest of this lecture focuses on the generation of code with three-address code.
Syntax tree may also be used as a basis of the generation

48
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53WHAT IS THREE-ADDRESS CODE?

[S
tr
o
n
g
et

a
l.
,
1
9
5
8
,
G
o
sl
in
g
,
1
9
9
5
]

Three-Address Code (TAC)

Sequence of three-address instructions

Three-Address Instruction

Has the form: r = l op r

op is operation to apply

l and r are the addresses of the operands if needed

r is the address storing the result of the operation

Example

*

a -

b c

+

d

*

+
t1 = b - c

t2 = a * t1
t3 = a + t2
t4 = t1 * d

t5 = t3 + t4

where ti is a name automatically generated

49
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code
Language basics
Quadruple form
Triple form
Indirect triple form
Static single-assignment form

5 Code generation of variables

6 Code generation of statements

7 Conclusion 50
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53ADDRESS

Address can be one of:

Constant
Compiler must deal
with many different

types of constants and
variables

Name
Source-program name.
In implementation, it is
replaced by a pointer
to a symbol-table entry

Temporary Name
Created by the

compiler.
Usefull for creating a

distinct name each time
a temporary is needed.

Usual syntax: ti

51
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53LABEL

Symbolic Label

Index of a three-address instruction in the sequence of instructions

Numeric positions can be substituted for the labels, either by making a separate
computing pass or by “backpatching”

L:t1 = i + 1

i = t1
t2 = i * 8

t3 = a [t2]

if t3 < v then goto L

Symbolic Label

103:t1 = i + 1

104:i = t1
105:t2 = i * 8

106:t3 = a [t2]

107:if t3 < v then goto 103

Numeric Position

52
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53ASSIGNMENT INSTRUCTIONS

Copy

x = y

The value of y is copied at the address of x

Assignment after Binary Operation

x = y <op> z

<op> is a binary arithmetic or logical operation, y and z are operands, and x receives
the result

Assignment after Unary Operation

x = <op> y

<op> is an unary operation, e.g., unary minus, logical negation, conversion operators,
and y is operand, and x receives the result

53
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53JUMPING INSTRUCTIONS

Unconditional Jump

goto L

The three-address instruction with label L is the next to be executed

Relational Condition Jump

if x <relop> y goto L

The three-address instruction with label L is the next to be executed if, and only if, the
relational operator <relop>, e.g., <, <=, >. . . , applied to x and y is evaluated to
true
Otherwise, the instruction following the conditional jump instruction in sequence is
executed next

Boolean Condition Jump

if x goto L, or: ifFalse x goto L

Equivalent to: if x = true goto L, and: if x = false goto L, respectively

54
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53PROCEDURE CALL INSTRUCTION

Procedure calls and returns are implemented using the following
instructions:

param x: for passing the value x as parameters

call p,n: for the procedure call

y = call p,n: for the function call

return y: for returning a value

where x and y are addresses, p is the name of the subroutine, n is the

number of parameters to pass to the subroutine.

param x1
param x2
. . .
param xn
call p,n

Procedures and their implementation are detailed in Chapter 5

55
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53INDEX COPY INSTRUCTIONS

Reading

x = y[i]

Copy the value of the ith memory unit beyond y at the address of x

Writing

x[i] = y

Copy the value y at the ith memory unit beyond x

56
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53ADDRESS AND POINTER ASSIGNMENT INSTRUCTIONS

Refencing of a value

x = &y

Copy the location of y in memory at the address of x

Derefencing of an address

x = *y

Copy the value at the address y in memory at the address of x

Indirect Copy

*x = y

Copy the value of y at the address stored into x

57
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF THREE-ADDRESS CODE

byte v ;
i n t i ;
byte [] a ;

do {
i = i + 1 ;

} whi le (a [i] < v)

L:t1 = i + 1

i = t1
t2 = i * 8

t3 = a[t2]

if t3 < v then goto L

58
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53DO WE NEED MORE THREE-ADDRESS INSTRUCTIONS?

Available operators is
an important issue in
the design of an
intermediate form

Operator set must be
rich enough to
implement the
operations from the
source language

Operators that are
close to machine
instructions make it
easier to implement
the intermediate form
on a target machine

If long sequences of
instructions for
source-language must
be generated, then the
optimizer and code
generator may have to
work harder to
generate good code

59
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53IMPLEMENTATION OF THREE-ADDRESS CODE

Three-address instructions could be implemented in a compiler as objects or as
records following one of:

01

Quadruple

Representation with four fields

02

Triple

Representation with three
fields

03

Indirect Triple

References to triples

60
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code
Language basics
Quadruple form
Triple form
Indirect triple form
Static single-assignment form

5 Code generation of variables

6 Code generation of statements

7 Conclusion 61
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53QUADRUPLE FORM

Quadruple Form for Three-Address Instruction

A quadruple has four fields:

<op> <arg1> <arg2> <result>

<op>: this field contains an internal code for the operator

<arg1> and <arg2>: they are the arguments of the operator

<result>: it contains the result value computed by the operator

62
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF QUADRUPLES

t1 = minus c

t2 = b * t1
t3 = minus c

t4 = b * t3
t5 = t2 + t4
a = t5

op arg1 arg2 result

minus c t1
* b t1 t2
minus c t3
* b t3 t4
+ t2 t4 t5
= t5 a

63
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF IMPLEMENTATION IN C

/* Ope ra t i on s suppo r t ed by the th r ee=add r e s s code */
typede f enum { MULTIPLY , ADD, MINUS , . . . } Operato r ;

/* De f i n i t i o n o f a paramete r o r a r e t u r n v a l u e */
typede f union {

uns igned long add r e s s ; /* add r e s s o f a v a r i a b l e */
l ong i n t e g e r v a l u e ; /* i n t e g e r con s t an t */
double f l o a t v a l u e ; /* f l o a t i n g =po i n t con s t an t */

} Value ;

/* De f i n i t i o n o f a s i n g l e quad rup l e */
typede f s t r u c t {

Operato r o p e r a t o r ;
Value arg1 ;
Value arg2 ;
Value r e s u l t ;

} Quadruple ;

/* I n s t r u c t i o n sequence */
Quadruple [] code ;

64
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code
Language basics
Quadruple form
Triple form
Indirect triple form
Static single-assignment form

5 Code generation of variables

6 Code generation of statements

7 Conclusion 65
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53TRIPLE FORM

Result in quadruples is primarily used for temporary names

Triple Form for Three-Address Instruction

A triple has only three fields:

<op> <arg1> <arg2>

Result of an operation x <op> y is referred by its position, e.g., (0), rather
than by an explicit temporary name

66
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRIPLES

t1 = minus c

t2 = b * t1
t3 = minus c

t4 = b * t3
t5 = t2 + t4
a = t5

op arg1 arg2
0 minus c

1 * b (0)

2 minus c

3 * b (2)

4 + (1) (3)

5 = a (4)

67
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF IMPLEMENTATION IN C

/* Ope ra t i on s suppo r t ed by the th r ee=add r e s s code */
typede f enum { MULTIPLY , ADD, MINUS , . . . } Operato r ;

/* De f i n i t i o n o f a paramete r o r a r e t u r n v a l u e */
typede f union {

uns igned long add r e s s ; /* add r e s s o f a v a r i a b l e */
l ong i n t e g e r v a l u e ; /* i n t e g e r con s t an t */
double f l o a t v a l u e ; /* f l o a t i n g =po i n t con s t an t */

} Value ;

/* De f i n i t i o n o f a s i n g l e t r i p l e */
typede f s t r u c t {

Operato r o p e r a t o r ;
Value arg1 ;
Value arg2 ;

} T r i p l e ;

/* I n s t r u c t i o n sequence */
T r i p l e [] code ;

68
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53WHY QUADRUPLE OR TRIPLE?

QUADRUPLE

Relevant for optimizing compiler, where instructions are often moved
around
When moving an instruction, then instructions that use the result require
no change

TRIPLE

Result of an operation is referred by its position, so moving may
require to change all references to that result

This last problem does not occur with indirect triples

69
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code
Language basics
Quadruple form
Triple form
Indirect triple form
Static single-assignment form

5 Code generation of variables

6 Code generation of statements

7 Conclusion 70
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53INDIRECT TRIPLE

Indirect triples consist of a listing of references to triples, rather than a listing of
triples themselves

35 (0)
36 (1)
37 (2)
38 (3)
39 (4)
40 (5)

op arg1 arg2
0 minus c
1 * b (0)
2 minus c
3 * b (2)
4 + (1) (3)
5 = a (4)

Optimizing compiler can reorder the instruction list, without affecting the triples
themselves

In Java, an array of instructions is similar to an indirect triple representation, since
Java treats the array elements as references to objects

71
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code
Language basics
Quadruple form
Triple form
Indirect triple form
Static single-assignment form

5 Code generation of variables

6 Code generation of statements

7 Conclusion 72
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53STATIC-SINGLE ASSIGNMENT FORM

Static Single-Assignment form (SSA)

Evolution of three-address form.
Intermediate representation that facilitates certain code optimizations

Two differences between SSA and the standard form of the three-address code:

1 All assignments in SSA are to variables with distinct names

2 Introduction of the ϕ-function

73
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53DISTINCT ASSIGNMENTS IN SSA

All assignments in SSA are to variables with distinct names

p = a + b

q = p - c

p = q * d

p = e - p

q = p + q

Standard Form

p1 = a + b

q1 = p1 - c

p2 = q1 * d

p3 = e - p2
q2 = p3 + q1

SSA Form

74
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53ϕ-FUNCTION

ϕ-Function

Notation convention to combine two definitions of the same variable in parallel
control-flow paths

Example

if flag then x = -1;
else x = 1;
y = x * a

if flag then x1 = -1;
else x2 = 1;
y = ϕ(x1, x2) * a

Impossible to determine which x value is used for x * a

⇒ harder to optimize the target code

ϕ-function replies the “defined” value in its arguments

75
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations
Expressions
Type checking

6 Code generation of statements

7 Conclusion

76
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53TYPES AND DECLARATIONS

Application of types can be grouped as follows:

Type Checking

Ensures operand types match
expected ones

Translation
Application

Storage size and location at
run-time

Implicit type conversion. . .

77
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations

Type descriptions
Type equivalence
Declarations
Storage layout for local names
Sequence of declarations
Fields in record or class

Expressions
Type checking

6 Code generation of statements

7 Conclusion

78
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53TYPE EXPRESSIONS

Types have structure represented by the type expressions

Type Expression

Type expression is one of:

1 Basic type: boolean, char, integer, float, void

2 Type name

3 Expression built with the array type constructor

4 Record: data structure with named fields

5 Function prototype: by using the function prototype constructor
inputType → outputType

6 Cartesian product of two type expressions: if s and t are type expressions, then
s × t is a type expression

79
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations

Type descriptions
Type equivalence
Declarations
Storage layout for local names
Sequence of declarations
Fields in record or class

Expressions
Type checking

6 Code generation of statements

7 Conclusion

80
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53TYPE EQUIVALENCE

We must define how to convert a value from one type to others
Many type-checking rules have the form:

“if two type expressions are equivalent then return a certain type else error”

Type Equivalence

Two types are structurally equivalent when:

1 They are of the same basic type

2 They are formed by applying the same constructor to structurally equivalent types

3 One is a type name that denotes the other

Points 1 and 2 are used to defined the equivalence between two type names, i.e., the
name equivalence

81
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations

Type descriptions
Type equivalence
Declarations
Storage layout for local names
Sequence of declarations
Fields in record or class

Expressions
Type checking

6 Code generation of statements

7 Conclusion

82
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53DECLARATIONS

Declaration of types is handled by a grammar like:

⟨decls⟩ ::= ⟨type⟩ id ; ⟨decls⟩
::= ϵ

⟨type⟩ ::= ⟨base type⟩ ⟨array decls⟩
::= record { ⟨decls⟩ }

⟨base type⟩ ::= int | float

⟨array decls⟩ ::= [num] ⟨array decls⟩
::= ϵ

This grammar supports basic types, arrays and records:
float name0
int [3][4] name0
record { float name1; record { int name2; } } name0

83
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations

Type descriptions
Type equivalence
Declarations
Storage layout for local names
Sequence of declarations
Fields in record or class

Expressions
Type checking

6 Code generation of statements

7 Conclusion

84
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53STORAGE LAYOUT FOR THE LOCAL NAMES

From the type of a name, amount of storage needed at run-time could be determined at compile
time

Size Determination

Width of a type (and not of a variable) is the number of storage units (usually bytes) needed for
values of that type

Basic type requires an integral number of storage units

Data of varying length (string, dynamic array. . .) is handled by reserving a known fixed amount
of storage units for a pointer to the data (usually 64 or 128 bits)

Address (Location) Determination for Run-time

Relative address of each name could be determined based on their size

For easy access, aggregated data (array, class. . .) is allocated in contiguous block

Both type (size) and relative address are saved in the symbol table

85
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53ADDRESS ALIGNMENT

Storage layout for data objects is strongly influenced by the addressing constraints
of the target machine

Examples

Instructions to add integers may expect integers to be aligned, i.e., placed at certain
positions in memory such as an address divisible by 4

Array of ten characters needs only enough bytes to hold ten characters, a compiler may
therefore allocate 12 bytes (the next multiple of 4)

Padding

Space left unused due to alignment considerations

A compiler may generate instructions for limiting padding

86
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TYPE AND WIDTH DETERMINATION

SDD below computes types and their widths for basic and array types
(records will be discussed later)

Type ::= ⟨Base⟩ t = Base.type
w = Base.width

⟨Arrays⟩ head.type = Arrays.type
head.width = Arrays.width

Base ::= int Base.type = integer
Base.width = 4

| float Base.type = float
Base.width = 8

Arrays ::= [num] ⟨Arrays⟩ head.type = array (num.value, Arrays.type)
head.width = num.value * Arrays.width

| ϵ head.type = t
head.width = w

87
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations

Type descriptions
Type equivalence
Declarations
Storage layout for local names
Sequence of declarations
Fields in record or class

Expressions
Type checking

6 Code generation of statements

7 Conclusion

88
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53SEQUENCE OF DECLARATIONS

Modern languages
allow all the
declarations in a single
procedure to be
processed as a group

Declarations may be
distributed in a
procedure, e.g., in
Java, but they can still
be processed when the
procedure is analyzed

Variable named
”offset ” to keep
track of the next
available relative
address

89
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF DECLARATION SEQUENCE AND OFFSET USAGE

Program ::= offset = 0
⟨Decls⟩

Decls ::= ⟨Type⟩ id s = new Symbol(id.lexeme)
s.offset = offset
s.type = Type.type
SymbolTable.current.declare(id.lexeme, s)
offset = offset + Type.width

⟨Decls⟩
| ϵ

Semantic action of ⟨Decls⟩ creates a
symbol table’s entry

Symbol table takes:
− name of the variable (its lexeme)
− type of the variable (implicit size)
− storage position of the variable

90
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations

Type descriptions
Type equivalence
Declarations
Storage layout for local names
Sequence of declarations
Fields in record or class

Expressions
Type checking

6 Code generation of statements

7 Conclusion

91
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53DEFINITION OF RECORDS OR CLASSES

Extension of the previous grammar with T -production

Type ::= ⟨Base⟩ t = Base.type; w = Base.width
⟨Arrays⟩ head.type = Arrays.type; head.width = Arrays.width

| record { ⟨Types⟩ } head.type = record; head.width = Types.width
Types ::= ⟨Type⟩⟨Types⟩ head.width = Type.width + Types.width

| ϵ head.width = 0
Base ::= int head.type = integer; head.width = 4

| float head.type = float; head.width = 8
Arrays ::= [num] ⟨Arrays⟩ head.type = array (num.value,C.type)

head.width = num.value * C.width
| ϵ head.type = t; head.width = w

Field names in a record must be
distinct

Offset or relative address for a field
name is relative to the data area for
that record

92
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53DEFINE AN ENVIRONMENT FOR EACH RECORD

For convenience, record is defined with a specific symbol table, or environment

Type ::= record { SymbolTable.current.offset = offset
SymbolTable.current = SymbolTable.openContext()
offset = 0

⟨Types⟩ } head.type = record (SymbolTable.current)
head.width = offset
SymbolTable.current = SymbolTable.closeContext()
offset = SymbolTable.current.offset

Classes are stored as records, since no storage is reserved for methods

93
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations
Expressions
Type checking

6 Code generation of statements

7 Conclusion

94
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53TRANSLATION OF EXPRESSIONS

How to translate source
expressions to three-address
code?

Translation function may be
placed in two locations:

1 inside the semantic
actions themselves

2 inside a dedicated
method, usually called
generate(), of the
syntax tree

95
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations
Expressions

Operations in expressions
Incremental translation for Strings of Characters
Translation of array elements

Type checking

6 Code generation of statements

7 Conclusion
96

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53TRANSLATION OF THE EXPRESSIONS

Each operation in the source expression are translated to its equivalent three-address
code, e.g., assignment and arithmetic operators

S ::= id = ⟨E⟩ ; head.code = E.code | quadruple (”=”, E.addr,
∅, SymbolTable.current.get(id.lexeme))

E ::= ⟨E⟩ + ⟨E⟩ head.addr = new TemporaryVariable()
head.code = E1.code | E2.code |

quadruple (”+”, E1.addr, E2.addr, head.addr)
E ::= - ⟨E⟩ head.addr = new TemporaryVariable()

head.code = E.code |
quadruple (”minus”, E.addr, ∅, head.addr)

| (⟨E⟩) head.addr = E.addr; head.code = E.code
| id head.addr = SymbolTable.current.get(id.lexeme)

head.code = ””

97
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53TRANSLATION OF THE EXPRESSIONS

Each operation in the source expression are translated to its equivalent three-address
code, e.g., assignment and arithmetic operators

S ::= id = ⟨E⟩ ; head.code = E.code | quadruple (”=”, E.addr,
∅, SymbolTable.current.get(id.lexeme))

E ::= ⟨E⟩ + ⟨E⟩ head.addr = new TemporaryVariable()
head.code = E1.code | E2.code |

quadruple (”+”, E1.addr, E2.addr, head.addr)
E ::= - ⟨E⟩ head.addr = new TemporaryVariable()

head.code = E.code |
quadruple (”minus”, E.addr, ∅, head.addr)

| (⟨E⟩) head.addr = E.addr; head.code = E.code
| id head.addr = SymbolTable.current.get(id.lexeme)

head.code = ””

1O: | is the operator for string concatenation
2O: quadruple creates a quadruple form of three-address code
3O: Attribute code represents the generated three-address code for each nonterminal

97
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53TRANSLATION OF THE EXPRESSIONS

Each operation in the source expression are translated to its equivalent three-address
code, e.g., assignment and arithmetic operators

S ::= id = ⟨E⟩ ; head.code = E.code | quadruple (”=”, E.addr,
∅, SymbolTable.current.get(id.lexeme))

E ::= ⟨E⟩ + ⟨E⟩ head.addr = new TemporaryVariable()
head.code = E1.code | E2.code |

quadruple (”+”, E1.addr, E2.addr, head.addr)
E ::= - ⟨E⟩ head.addr = new TemporaryVariable()

head.code = E.code |
quadruple (”minus”, E.addr, ∅, head.addr)

| (⟨E⟩) head.addr = E.addr; head.code = E.code
| id head.addr = SymbolTable.current.get(id.lexeme)

head.code = ””

4O: TemporaryVariable creates a temporary variable with specific index
5O: Attribute address is address of the expression symbol’s value

97
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

S ::= id = ⟨E⟩ ; head.code = E.code | quadruple (”=”, E.addr,
∅, SymbolTable.current.get(id.lexeme))

E ::= ⟨E⟩ + ⟨E⟩ head.addr = new TemporaryVariable()
head.code = E1.code | E2.code |

quadruple (”+”, E1.addr, E2.addr, head.addr)
E ::= - ⟨E⟩ head.addr = new TemporaryVariable()

head.code = E.code |
quadruple (”minus”, E.addr, ∅, head.addr)

| (⟨E⟩) head.addr = E.addr; head.code = E.code
| id head.addr = SymbolTable.current.get(id.lexeme)

head.code = ””

Input: a = b + - c

id

E-

E+

id

E

E ;=id

S

98
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

S ::= id = ⟨E⟩ ; head.code = E.code | quadruple (”=”, E.addr,
∅, SymbolTable.current.get(id.lexeme))

E ::= ⟨E⟩ + ⟨E⟩ head.addr = new TemporaryVariable()
head.code = E1.code | E2.code |

quadruple (”+”, E1.addr, E2.addr, head.addr)
E ::= - ⟨E⟩ head.addr = new TemporaryVariable()

head.code = E.code |
quadruple (”minus”, E.addr, ∅, head.addr)

| (⟨E⟩) head.addr = E.addr; head.code = E.code
| id head.addr = SymbolTable.current.get(id.lexeme)

head.code = ””

Input: a = b + - c

id

E-

E+

id

E

E ;=id

S

98
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

S ::= id = ⟨E⟩ ; head.code = E.code | quadruple (”=”, E.addr,
∅, SymbolTable.current.get(id.lexeme))

E ::= ⟨E⟩ + ⟨E⟩ head.addr = new TemporaryVariable()
head.code = E1.code | E2.code |

quadruple (”+”, E1.addr, E2.addr, head.addr)
E ::= - ⟨E⟩ head.addr = new TemporaryVariable()

head.code = E.code |
quadruple (”minus”, E.addr, ∅, head.addr)

| (⟨E⟩) head.addr = E.addr; head.code = E.code
| id head.addr = SymbolTable.current.get(id.lexeme)

head.code = ””

Input: a = b + - c

id

E-

E+

id

E

E ;=id

S

addr=b
code=""

98
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

S ::= id = ⟨E⟩ ; head.code = E.code | quadruple (”=”, E.addr,
∅, SymbolTable.current.get(id.lexeme))

E ::= ⟨E⟩ + ⟨E⟩ head.addr = new TemporaryVariable()
head.code = E1.code | E2.code |

quadruple (”+”, E1.addr, E2.addr, head.addr)
E ::= - ⟨E⟩ head.addr = new TemporaryVariable()

head.code = E.code |
quadruple (”minus”, E.addr, ∅, head.addr)

| (⟨E⟩) head.addr = E.addr; head.code = E.code
| id head.addr = SymbolTable.current.get(id.lexeme)

head.code = ””

Input: a = b + - c

id

E-

E+

id

E

E ;=id

S

addr=b
code=""

addr=c
code=""

98
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

S ::= id = ⟨E⟩ ; head.code = E.code | quadruple (”=”, E.addr,
∅, SymbolTable.current.get(id.lexeme))

E ::= ⟨E⟩ + ⟨E⟩ head.addr = new TemporaryVariable()
head.code = E1.code | E2.code |

quadruple (”+”, E1.addr, E2.addr, head.addr)
E ::= - ⟨E⟩ head.addr = new TemporaryVariable()

head.code = E.code |
quadruple (”minus”, E.addr, ∅, head.addr)

| (⟨E⟩) head.addr = E.addr; head.code = E.code
| id head.addr = SymbolTable.current.get(id.lexeme)

head.code = ””

Input: a = b + - c

id

E-

E+

id

E

E ;=id

S

addr=b
code=""

addr=c
code=""

addr=t1
code="t1 = minus c"

98
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

S ::= id = ⟨E⟩ ; head.code = E.code | quadruple (”=”, E.addr,
∅, SymbolTable.current.get(id.lexeme))

E ::= ⟨E⟩ + ⟨E⟩ head.addr = new TemporaryVariable()
head.code = E1.code | E2.code |

quadruple (”+”, E1.addr, E2.addr, head.addr)
E ::= - ⟨E⟩ head.addr = new TemporaryVariable()

head.code = E.code |
quadruple (”minus”, E.addr, ∅, head.addr)

| (⟨E⟩) head.addr = E.addr; head.code = E.code
| id head.addr = SymbolTable.current.get(id.lexeme)

head.code = ””

Input: a = b + - c

id

E-

E+

id

E

E ;=id

S

addr=b
code=""

addr=c
code=""

addr=t1
code="t1 = minus c"

addr=t2
code="t1 = minus c; t2 = b + t1"

98
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

S ::= id = ⟨E⟩ ; head.code = E.code | quadruple (”=”, E.addr,
∅, SymbolTable.current.get(id.lexeme))

E ::= ⟨E⟩ + ⟨E⟩ head.addr = new TemporaryVariable()
head.code = E1.code | E2.code |

quadruple (”+”, E1.addr, E2.addr, head.addr)
E ::= - ⟨E⟩ head.addr = new TemporaryVariable()

head.code = E.code |
quadruple (”minus”, E.addr, ∅, head.addr)

| (⟨E⟩) head.addr = E.addr; head.code = E.code
| id head.addr = SymbolTable.current.get(id.lexeme)

head.code = ””

Input: a = b + - c

id

E-

E+

id

E

E ;=id

S

addr=b
code=""

addr=c
code=""

addr=t1
code="t1 = minus c"

addr=t2
code="t1 = minus c; t2 = b + t1"

code="t1 = minus c; t2 = b + t1;
a = t2"

98
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations
Expressions

Operations in expressions
Incremental translation for Strings of Characters
Translation of array elements

Type checking

6 Code generation of statements

7 Conclusion
99

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53INCREMENTAL TRANSLATION FOR STRINGS OF CHARACTERS

Code attributes can be long string, so they are usually generated incrementally

Instead of building up E.code as previously, we can modify quadruple to output
the new three-address instructions in a external data structure

The code attribute is removed

S ::= id = ⟨E⟩ ; quadruple (”=”, E.addr, ∅,
SymbolTable.current.get(id.lexeme))

E ::= ⟨E⟩ + ⟨E⟩ head.addr = new TemporaryVariable()
quadruple (”+”, E1.addr, E2.addr, head.addr)

E ::= - ⟨E⟩ head.addr = new TemporaryVariable()
quadruple (”minus”, E.addr, ∅, head.addr)

| (⟨E⟩) head.addr = E.addr
| id head.addr = SymbolTable.current.get(id.lexeme)

100
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations
Expressions

Operations in expressions
Incremental translation for Strings of Characters
Translation of array elements

Type checking

6 Code generation of statements

7 Conclusion
101

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53ADDRESSES OF ARRAY ELEMENTS

Array elements can be accessed quickly if they are stored in a block of consecutive locations

Position of the element at index i in 1-dimension array (zero-base indexing)

base + w × i

where w is the width of each array element, base is the relative address of the storage allocated for the
array

Position of the element at index (i0, . . . , in−1) in n-dimension array (zero-base indexing, row major)

base + w ×

 ∑
j∈[0..n)

 ∏
d∈[j..n)

sd

× ij

+ in−1

where sd is the number of cells for dimension d .

102
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53TOWARDS THE TRANSLATION OF ARRAY REFERENCES

The major problem in generating code for array references is to relate the
address-calculation formulas to a grammar for array references

Let the nonterminal L generates an array name followed by a sequence of index
expressions

⟨L⟩ → ⟨L⟩ [⟨E⟩] | id [⟨E⟩]

Assume all arrays are zero-based indexing

103
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53TRANSLATION FOR 1-DIMENSION ARRAY

L ::= id [⟨E⟩] head.base = SymbolTable.current.get(id.lexeme)
head.type = head.base.elementType
head.addr = new TemporaryVariable()
quadruple (”*”, E.addr, head.type.width, head.addr)

Attribute ”base”: the symbol of the array

Attribute ”type”: the type of the elements of the array (given by the symbol table
entry)

Attribute ”addr”: the address of the element in the storage from the beginning of
the array

104
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53TRANSLATION FOR n-DIMENSION ARRAY

L ::= ⟨L⟩ [⟨E⟩] head.base = L.base
head.type = L.type.elementType
t = new TemporaryVariable()
head.addr = new TemporaryVariable()
quadruple (”*”, E.addr, head.type.width, t)
quadruple (”+”, L.addr, t, head.addr)

Attribute ”base”: the symbol of the array

Attribute ”type”: the type of the elements of the array (given by the symbol table
entry)

Attribute ”addr”: the address of the element in the storage from the beginning of
the array

105
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53INTRODUCING ARRAY REFERENCES INTO THE GRAMMAR

S ::= ⟨L⟩ = ⟨E⟩ ; quadruple (”[]=”, L.addr, E.addr, L.base)
E ::= ⟨L⟩ head.addr = new TemporaryVariable()

quadruple (”=[]”, L.base, L.addr, head.addr)

Attribute ”base”: the symbol of the array

Attribute ”addr”: the address of the element in the storage from the beginning of
the array; or the address of a temporary variable

106
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

Input: c + a[i][j]

id

id

E
addr

id

E
addr

+ E
addr

L
base typeaddr

L
base typeaddr

[]E
addr

id []E
addr

Output:

107
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

Input: c + a[i][j]

id

id

E
addr

id

E
addr

+ E
addr

L
base typeaddr

L
base typeaddr

[]E
addr

id []E
addr

Output:

107
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

Input: c + a[i][j]

E ::= id head.addr = SymbolTable.current.get(id.lexeme)
id

id

E
addr

id

E
addr

+ E
addr

L
base typeaddr

L
base typeaddr

[]E
addr

id []E
addr

Output:

c

107
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

Input: c + a[i][j]

E ::= id head.addr = SymbolTable.current.get(id.lexeme)
id

id

E
addr

id

E
addr

+ E
addr

L
base typeaddr

L
base typeaddr

[]E
addr

id []E
addr

Output:

c

i

107
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

Input: c + a[i][j]

L ::= id [⟨E⟩] head.base = SymbolTable.current.get(id.lexeme)
head.type = head.base.elementType
head.addr = new TemporaryVariable()
quadruple (”*”, E.addr, head.type.width, head.addr)

id

id

E
addr

id

E
addr

+ E
addr

L
base typeaddr

L
base typeaddr

[]E
addr

id []E
addr

Output:

c

i

a int
[3] t1

t1 = i * 12

Assume that:
a) a was declared as int[2][3]
b) An integer takes 4 bytes

107
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

Input: c + a[i][j]

E ::= id head.addr = SymbolTable.current.get(id.lexeme)
id

id

E
addr

id

E
addr

+ E
addr

L
base typeaddr

L
base typeaddr

[]E
addr

id []E
addr

Output:

c

i

a int
[3] t1

t1 = i * 12

j

107
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

Input: c + a[i][j]

L ::= ⟨L⟩ [⟨E⟩] head.base = L.base
head.type = L.type.elementType
t = new TemporaryVariable()
head.addr = new TemporaryVariable()
quadruple (”*”, E.addr, head.type.width, t)
quadruple (”+”, L.addr, t, head.addr)

id

id

E
addr

id

E
addr

+ E
addr

L
base typeaddr

L
base typeaddr

[]E
addr

id []E
addr

Output:

c

i

a int
[3] t1

t1 = i * 12

j

a int t3

t2 = j * 4

t3 = t1 + t2

107
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

Input: c + a[i][j]

E ::= ⟨L⟩ head.addr = new TemporaryVariable()
quadruple (”=[]”, L.base, L.addr, head.addr)

id

id

E
addr

id

E
addr

+ E
addr

L
base typeaddr

L
base typeaddr

[]E
addr

id []E
addr

Output:

c

i

a int
[3] t1

t1 = i * 12

j

a int t3

t2 = j * 4

t3 = t1 + t2
t4

t4 = a [t3]

107
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION OF AN EXPRESSION

Input: c + a[i][j]

E ::= ⟨E⟩ + ⟨E⟩ head.addr = new TemporaryVariable();
quadruple (”+”, E1.addr, E2.addr, head.addr)

id

id

E
addr

id

E
addr

+ E
addr

L
base typeaddr

L
base typeaddr

[]E
addr

id []E
addr

Output:

c

i

a int
[3] t1

t1 = i * 12

j

a int t3

t2 = j * 4

t3 = t1 + t2
t4

t4 = a [t3]

t5 = c + t4

t5

107
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations
Expressions
Type checking

6 Code generation of statements

7 Conclusion

108
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53TYPE CHECKING

[P
ie
rc
e,

2
0
0
2
,
M
il
n
er
,
1
9
7
8
]

Compiler determines if the types are consistent according to a collection of
logical rules that is called the type system

Assign a type expression to each
component of the source program

Verify type compliance and catch
errors

Synthesis
Type Checking

Inference
Type Checking

109
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations
Expressions
Type checking

Types of type checking
Forms of Type Checking
Type conversion
Overloaded and polymorphic functions

6 Code generation of statements

7 Conclusion

110
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53TYPES OF TYPE CHECKING

[P
ie
rc
e,

2
0
0
2
,
M
il
n
er
,
1
9
7
8
]

Dynamic Type
Checking

Run-time
Target code carries types

Static Type
Checking

Compile time
Eliminates the need for

dynamic checking

111
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations
Expressions
Type checking

Types of type checking
Forms of Type Checking
Type conversion
Overloaded and polymorphic functions

6 Code generation of statements

7 Conclusion

112
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53FIRST FORM: TYPE SYNTHESIS

Type Synthesis

Builds up the type of an expression from the types of its subexpressions

It requires names and their types to be declared before they are used

Relationship between types must be defined, e.g., T1 ⊂ T2 for value set of T1 are
included in value set of T2

Example

Type of E1 + E2 is defined according to the types of E1 and E2

If E1 is int and E2 is float then E1+E2 is float (int ⊂ float)

113
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53SECOND FORM: TYPE INFERENCE

Type Inference

Determines the type of a language construct from the way it is used

Type inference is needed for languages like ML or Python, which check types, but
do not require names to be declared

Example

Let the PHP code: { $a = 14; $b = "a" . $a; $c = 1 + $a; }
$a is used as a string for $b’s expression

$a is used as an integer for $c’s expression

114
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations
Expressions
Type checking

Types of type checking
Forms of Type Checking
Type conversion
Overloaded and polymorphic functions

6 Code generation of statements

7 Conclusion

115
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53WHY TYPE CONVERSION?

Consider:

Expression, e.g. f + i

Where f is a float and i is an integer

Representations in computer memory of floating-point numbers and integers are
different
Different machine instructions are used for operations on integers and floats
Compiler may need to convert one of the operands to ensure that both operands
are of the same type when the operator is applied:
t1 = (float) 2

t2 = t1 * 3.14

Type conversion rules vary from language to language

116
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53WIDENING AND NARROWING TYPE CONVERSIONS

Widening conversion: preserve information between the value before the
conversion and the value after the conversion
Narrowing conversion: can lose information
a→ b means: value of type a could be converted to value of type b

byte

short char

int

long

float

double

Widening Conversion

short

byte char

int

long

float

double

Narrowing Conversion

Ja
va

 C
o

n
ve

n
ti

o
n

s

117
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53IMPLICIT AND EXPLICIT TYPE CONVERSIONS

Implicit Conversion, or Coercion

Automatically done by the compiler, with a possible warning message in the case of
narrowing conversion

Many languages limit the implicit conversions to widening conversions

Explicit Conversion, or Cast

Conversions written in the source code by the programmer

118
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53FUNCTION MAXTYPE(T1, T2)

Definition
maxType : T× T→T

(t1, t2) 7→maximum or least upper bounds of t1 and t2
in the widening hierarchy; Otherwise error

Example

maxType(short, char) → int

byte

short char

int

long

float

double

Widening Conversion

119
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53FUNCTION WIDENVAR(A, TOUT , TIN)

Definition
widenVar : A× T× T→ A

(a, tout , tin) 7→ Generates the code that widens the
value pointed by a to the type tout

Assuming that a is of type tin

Conversion is done only if it is required

Returns the address were the result
of the is available.

120
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF FUNCTION WIDENVAR(A, TOUT , TIN)

Assume a language with only the two types int and float.

Function widenVar(a : A, tout : T, tin : T) : A
begin

if tout = tin then
return a;

else if tin = int and tout = float then
t ←new TemporaryVariable();
quadruple (”(float)”, a, ∅, t);
return t

else
Throw(”Cannot widen the variable”)

end

end

121
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53FUNCTION NARROWVAR(A, TOUT , TIN)

Definition
narrowVar : A× T× T→ A

(a, tout , tin) 7→ Generates the code that narrows the
value pointed by a to the type tout

Assuming that a is of type tin

Conversion is done only if it is required

Returns the address were the result
of the is available

122
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF FUNCTION NARROWVAR(A, TOUT , TIN)

Assume a language with only the two types int and float.

Function narrowVar(a : A, tout : T, tin : T) : A
begin

if tout ̸= int or tin ̸= float then
Throw(”Cannot narrow the variable”)

else if tout = int and tin = float then
t ←new TemporaryVariable();
quadruple (”(int)”, a, ∅, t);
return t

else
return a

end

end

123
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TYPE CONVERSIONS IN SDD

Attribute ”type ” is added to store the type of an expression
SDD is updated to check the types:

E ::= ⟨E⟩ + ⟨E⟩ head.type = maxType(E1.type, E2.type)
o1 = widenVar(E1.addr, E1.type, head.type)
o2 = widenVar(E2.addr, E2.type, head.type)
head.addr = new TemporaryVariable()
quadruple (”+”, o1, o2, head.addr)

E ::= id = ⟨E⟩ head.addr = SymbolTable.current.get(id.lexeme)
head.type = v.type
w = narrowVar(E.addr, E.type, head.type)
if (w ̸= E.addr)

warning ”May loose information”
else

w = widenVar(E.addr, E.type, head.type)
quadruple (”=”, w, ∅, head.addr)

124
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables
Types and declarations
Expressions
Type checking

Types of type checking
Forms of Type Checking
Type conversion
Overloaded and polymorphic functions

6 Code generation of statements

7 Conclusion

125
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53OVERLOADING OF A FUNCTION

Definition

Allow the creation of several functions with the same name, which differ from each
other in the type of the input(s) and the output(s) of the function

Depending on the context, the overloading may be for a function, a procedure, a
method, or an operator

Symbol table must contains all the signatures of the functions (in the
context, which is using the symbol table)

A signature consists of:
1 the function name
2 the list of the types of the formal parameters of the function
3 the return type (optional)

126
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53POLYMORPHIC FUNCTION

Definition

The term “polymorphic” refers to any code fragment that can be executed with
arguments of different types

Only parametric polymorphism is considered in this section
where the polymorphism is characterized by parameters or type variables

127
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF POLYMORPHIC FUNCTION

Consider the following definition in ML language:

fun l e n g t h (x) = i f n u l l (x) then 0 e l s e l e n g t h (t l (x)) + 1 ;

Consider the following statement in ML language:

l e n g t h ([” sun” , ”mon” , ” tue ”]) + l e n g t h ([10 , 9 , 8 , 7])

The same function length() is invoked on an array of strings and on an array of
integers.

The result of the ML statement is: 3 + 4 = 7

128
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53TYPE OF A POLYMORPHIC FUNCTION

Using the symbol ∀ and the type constructor list, the type/signature of the
function length is:

∀a.list(a)→ int

∀ symbol is the universal quantifier, and the type variable to which it is applied is
said to be bound by it

Type expression with a ∀ symbol is referred as a “polymorphic type”

Each time a polymorphic function is applied, its bound type variables (a. . .) can
denote a different type

129
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53DETERMINING THE TYPE OF A POLYMORPHIC FUNCTION

How to determine the types in the signature of a polymorphic function?

We must infer the types by exploring the syntax tree of the function
and applying the substitution and unification operations

Substitution
Mapping from type variables to

type expressions
Example: list (int) is an

instance of list (α), since it is
the result of substituting int for

α in list (α)

Unification
Determine whether type

variables s and t are structurally
equivalent by substituting the

type variables in s and t by type
expressions

130
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TYPE INFERENCE ON POLYMORPHIC FUNCTION

fun l e n g t h (x) =
i f n u l l (x) then 0
e l s e l e n g t h (t l (x)) + 1 ;

Expression Type Unification

length if

func

x

call +0

null x call 1

length call

tl x

131
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TYPE INFERENCE ON POLYMORPHIC FUNCTION

fun l e n g t h (x) =
i f n u l l (x) then 0
e l s e l e n g t h (t l (x)) + 1 ;

Expression Type Unification
length β → γ
x β

length if

func

x

call +0

null x call 1

length call

tl x

131
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TYPE INFERENCE ON POLYMORPHIC FUNCTION

fun l e n g t h (x) =
i f n u l l (x) then 0
e l s e l e n g t h (t l (x)) + 1 ;

Expression Type Unification
length β → γ
x β
if B× α× α→ α α = γ

length if

func

x

call +0

null x call 1

length call

tl x

131
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TYPE INFERENCE ON POLYMORPHIC FUNCTION

fun l e n g t h (x) =
i f n u l l (x) then 0
e l s e l e n g t h (t l (x)) + 1 ;

Expression Type Unification
length β → γ
x β
if B× α× α→ α α = γ
null list(ωn)→ B

length if

func

x

call +0

null x call 1

length call

tl x

131
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TYPE INFERENCE ON POLYMORPHIC FUNCTION

fun l e n g t h (x) =
i f n u l l (x) then 0
e l s e l e n g t h (t l (x)) + 1 ;

Expression Type Unification
length β → γ
x β
if B× α× α→ α α = γ
null list(ωn)→ B
null(x) B list(ωn) = β

length if

func

x

call +0

null x call 1

length call

tl x

131
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TYPE INFERENCE ON POLYMORPHIC FUNCTION

fun l e n g t h (x) =
i f n u l l (x) then 0
e l s e l e n g t h (t l (x)) + 1 ;

Expression Type Unification
length β → γ
x β
if B× α× α→ α α = γ
null list(ωn)→ B
null(x) B list(ωn) = β
0 int α = int

length if

func

x

call +0

null x call 1

length call

tl x

131
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TYPE INFERENCE ON POLYMORPHIC FUNCTION

fun l e n g t h (x) =
i f n u l l (x) then 0
e l s e l e n g t h (t l (x)) + 1 ;

Expression Type Unification
length β → γ
x β
if B× α× α→ α α = γ
null list(ωn)→ B
null(x) B list(ωn) = β
0 int α = int
+ ϕ× ϕ→ ϕ ϕ = α

length if

func

x

call +0

null x call 1

length call

tl x

131
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TYPE INFERENCE ON POLYMORPHIC FUNCTION

fun l e n g t h (x) =
i f n u l l (x) then 0
e l s e l e n g t h (t l (x)) + 1 ;

Expression Type Unification
length β → γ
x β
if B× α× α→ α α = γ
null list(ωn)→ B
null(x) B list(ωn) = β
0 int α = int
+ ϕ× ϕ→ ϕ ϕ = α

The type of the function ”length ” is:
length : list (ωn) → int

length if

func

x

call +0

null x call 1

length call

tl x

131
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements
Control flow
Backpatching

7 Conclusion

132
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53OUTLINE

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements
Control flow
Backpatching

7 Conclusion

133
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53CONTROL FLOW

Translation of statements (if-else-statements, while-statements. . .) needs
translation of boolean expressions

Boolean expressions are used for:

Altering the flow of control Computing logical values

To support this distinction, we may:

1 Use two different nonterminals
2 Use inherited attributes
3 Use a set of flags during the parsing
4 Build a syntax tree and invoke different procedures for the two different uses

134
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53SHORT-CIRCUIT CODE

Definition

Boolean operators are translated into jumps
These operators themselves do not appear in the three-address code

Value of a boolean expression is represented by a position in the code sequence

Example

i f (x < 100 | | x > 200 && x != y) x = 0 ;

if x < 100 then goto L1

ifFalse x > 200 then goto L2

ifFalse x ̸= y then goto L2

L1:x = 0
L2:. . .

135
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements
Control flow

Translate the control flow statements
Translate boolean expressions for control flow
Avoid redundant goto

Backpatching

7 Conclusion

136
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53STATEMENTS FOR CONTROL FLOW

Consider the grammar:

⟨S⟩ ::= if (⟨B⟩) ⟨S⟩
::= if (⟨B⟩) ⟨S⟩ else ⟨S⟩
::= while (⟨B⟩) ⟨S⟩

We introduce the attributes:

B.code and S.code: synthesized attributes; three-address code of the nonterminals
B.true: inherited attribute; the label of the code associated to the then-statements
B.false: inherited attribute; the label of the code associated to the else-statements
B.next: inherited attribute; the label of the code just after the current if-then-else
statements

137
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53STATEMENT IF-THEN

code for B
to B.true
to B.false

code for S
B.true:

B.false: ...

S ::= if (B.true = newlabel ()
B.false = head.next

⟨B⟩) S.next = head.next
label (B.true)

⟨S⟩

Nonterminal for the condition is no more E (nonterminal for expressions), but B
(specific nonterminal for boolean expressions in control flow)

newlabel() creates a new label each time it is called

label(α) attaches label α to the next three-address instruction to be generated

138
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53STATEMENT IF-THEN-ELSE

code for B
to B.true
to B.false

code for S1
B.true:

B.false:

...

goto head.next

code for S2
head.next:

S ::= if (B.true = newlabel ()
B.false = newlabel ()

⟨B⟩) S1.next = head.next
label (B.true)

⟨S⟩ else quadruple (”goto”, head.next, ∅, ∅)
S2.next = head.next
label (B.false)

⟨S⟩

139
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53STATEMENT WHILE

code for B
to B.true
to B.false

code for SB.true:

B.false: ...
goto begin

begin:
S ::= while (begin = newlabel ()

B.true = newlabel ()
B.false = head.next

⟨B⟩) S.next = begin
label (B.true)

⟨S⟩ quadruple (”goto”, begin, ∅, ∅)

140
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements
Control flow

Translate the control flow statements
Translate boolean expressions for control flow
Avoid redundant goto

Backpatching

7 Conclusion

141
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53BOOLEAN CONSTANTS IN THE CONTROL FLOW

Boolean expressions for control flow need dedicated semantic rules

Boolean expressions used in control-flow statements must be translated into
jumping three-address code

B ::= true quadruple (”goto”, head.true, ∅, ∅)
B ::= false quadruple (”goto”, head.false, ∅, ∅)

142
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53BOOLEAN OPERATOR NOT

code for B
...

B ::= ! ⟨B⟩ B.true = head.false
B.false = head.true

No code is needed for an expression of the form !B

Just interchange the true and false attributes of the head to set the true and
false attributes of B

143
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53BOOLEAN OPERATOR OR

code for B1

code for B2
B1.false:

...

to head.true
to B1.false
to head.true
to head.false

B ::= B1.true = head.true
B1.false = newlabel ()

⟨B⟩ B2.true = head.true
B2.false = head.false

|| ⟨B⟩

If B1 is true, the head is true

If B1 is false, evaluate B2

So B1.false is the label of the first instruction of B2

The value of the head becomes the same as the value of B2

144
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53BOOLEAN OPERATOR AND

code for B1

code for B2
B1.true:

...

to B1.true
to head.false
to head.true
to head.false

B ::= B1.true = newlabel ()
B1.false = head.false

⟨B⟩ B2.true = head.true
B2.false = head.false

&& ⟨B⟩

If B1 is false, the head is false

If B1 is true, evaluate B2

So B1.true is the label of the first instruction of B2

The value of the head becomes the same as the value of B2

145
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53COMPARISON OPERATORS

code for E1

code for E2

...

if a1 rel a2
goto head.true

goto head.false

B ::= ⟨E⟩ rel ⟨E⟩ t = new TemporaryVariable()
quadruple (rel.operator,

E1.addr, E2.addr, t)
quadruple (”if”, t,

head.true, ∅)
quadruple (”goto”, head.false,
∅, ∅)

Form a < b is translated to:
t = (a < b)
if t then goto B.true

goto B.false

146
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53EXAMPLE OF TRANSLATION

i f (x < 100 | | x > 200 && x != y) x = 0 ;

t1 = x < 100
if t1 then goto L2

goto L3

L3:t1 = x > 200
if x > 200 then goto L4

goto L1

L4:t1 = x ̸= y
if t1 then goto L2

goto L1

L2:x = 0

L1:. . .

147
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements
Control flow

Translate the control flow statements
Translate boolean expressions for control flow
Avoid redundant goto

Backpatching

7 Conclusion

148
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53REDUNDANT GOTO STATEMENTS

The semantic rules described in the previous slides
may generate more goto instructions than strictly necessary

Example

L3:t1 = x > 200
if t1 then goto L4

goto L1

L4:. . .
L1:. . .

Best Practice
L3:t1 = x > 200

ifFalse t1 then goto L1

. . .
L1:. . .

149
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53REMOVE REDUNDANT GOTOS

Avoiding redundant gotos is done by introducing a constant for the value of
the labels: fall
It means “don’t generate any jump” or “fall in the next available instruction”

We can adapt the semantic rules of the boolean expressions. ⟨S⟩ → if (⟨B⟩) ⟨S⟩

S ::= if (B.true = newlabel ()
B.false = head.next

⟨B⟩) S.next = head.next
label (B.true)

⟨S⟩

S ::= if (B.true = fall
B.false = head.next

⟨B⟩) S.next = head.next
⟨S⟩

150
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53REMOVE REDUNDANT GOTOS OF THE OR OPERATOR

B ::= B1.true = head.true
B1.false = newlabel ()

⟨B⟩ B2.true = head.true
B2.false = head.false

|| ⟨B⟩

B ::= if head.true = fall
B1.true = newlabel()

else
B1.true = head.true

B1.false = fall
⟨B⟩ B2.true = head.true

B2.false = head.false
|| ⟨B⟩ if head.true = fall

label(B1.true)

151
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements
Control flow
Backpatching

7 Conclusion

152
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53PROBLEM WITH JUMPS

A key problem is the matching of a jump instruction
with the target address of the jump

Example

Consider the statement if (⟨B⟩) ⟨S⟩
In a one-pass translation, B must be translated before S is examined

What is the address of the label that permits to go over the code for S?

153
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53SOLVING THE PROBLEM WITH JUMPS

Solution 1

In the previous slides, we solve this problem by using inherited attribute ”next”

But a separate (additionnal) pass is then needed to bind labels to addresses

Solution 2

Backpatching can be used to generate code for boolean expressions and
flow-of-control statements in one pass

This approach is detailled in the following slides

154
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53GENERAL PRINCIPLE OF BACKPATCHING

When the jump target is after the
current instruction

Address of the current instruction is
added into a list

When the address of the target
instruction is known

Instructions in the list are updated

New synthesized attributes in B:

B.bptruelist: list of jump or conditional jump instructions into which we must
insert the label to which control goes if B is true.

B.bpfalselist: list of instructions that eventually get the label to which control
goes when B is false.

155
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53TOOLS FOR THE BACKPATCHING

makebplist(adr): creates a new list containing only adr , an index into the array of
instructions

mergebplists(lst1,lst2): concatenates the lists pointed by lst1 and lst2, and
returns a pointer to the result

backpatch(lst,adr): inserts adr as the target label for each of the instructions on
the list pointed to by lst

instadr(): replies the address of the instruction that will be generated by the next
call to quadruple ()

Unknown address: Keyword ? represents an unkwown address

156
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53BACKPATCHING OF THE BOOLEAN CONTROL-FLOW RULES

B ::= true head.bptruelist = makebplist(instadr())
quadruple (”goto”, ?, ∅, ∅)

B ::= false head.bpfalselist = makebplist(instadr())
quadruple (”goto”, ?, ∅, ∅)

B ::= ⟨E⟩ rel ⟨E⟩ t = new TemporaryVariable()
quadruple (rel.operator, E1.addr, E2.addr, t)
head.bptruelist = makebplist(instadr())
quadruple (”if”, t, ?, ∅)
head.bpfalselist = makebplist(instadr())
quadruple (”goto”, ?, ∅, ∅)

B ::= ⟨B⟩ || backpatch (B1.bpfalselist, instadr())
⟨B⟩ head.bptruelist = mergbplists(

B1.bptruelist, B2.bptruelist)
head.bpfalselist = B2.bpfalselist

157
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53BACKPATCHING OF THE CONTROL-FLOW STATEMENTS

S ::= if (⟨B⟩) backpatch(B.bptruelist, instadr())
⟨S⟩ head.bpnextlist = mergebplists(B.bpfalselist, S.bpnextlist)

S ::= if (⟨B⟩) backpatch(B.bptruelist, instadr())
⟨S⟩ else backpatch(B.bpfalselist, instadr())
⟨S⟩ head.bpnextlist = mergebplists(S1.bpnextlist, S2.bpnextlist)

S ::= while a = instadr()
(⟨B⟩) backpatch(B.bptruelist, instadr())
⟨S⟩ backpatch(S.bpnextlist, a)

quadruple (”goto”, a, ∅, ∅)
head.bpnextlist = B.bpfalselist

The attribute bpnextlist is the list of the addresses of the instructions that are
refering the “next instruction”

158
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53ALGORITHM OF BACKPATCH()

Procedure backpatch(list, address)
Input : Q is the global list of the generated quadruples
begin

foreach a ∈ list do
q ← Q[a];
if q.op = ”goto” then

if q.arg1 ̸= ? then Throw(”Cannot backpatch”);
q.arg1 ← address;

else if q.op = ”if” then
if q.arg2 ̸= ? then Throw(”Cannot backpatch”);
q.arg2 ← address;

else if q.op = ”ifFalse” then
if q.arg2 ̸= ? then Throw(”Cannot backpatch”);
q.arg2 ← address;

else
Throw(”Instruction to backpatch not found”)

end

end

end

159
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53OUTLINE

1 Introduction

2 Translation scheme

3 Syntax tree and graph

4 Three-address code

5 Code generation of variables

6 Code generation of statements

7 Conclusion

160
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53KEY CONCEPTS IN THE CHAPTER

Inherited and synthesized attributes: Syntax-directed definitions may use two
kinds of attributes. A synthesized attribute at a parse-tree node is computed from
attributes at its children. An inherited attribute at a node is computed from
attributes at its parent and/or siblings
Dependency graphs: Given a parse tree and an SDD, we draw edges among the
attribute instances associated with each parse-tree node to denote that the value
of the attribute at the head of the edge is computed in terms of the value of the
attribute at the tail of the edge
S-Attributed definitions: In a S-attributed SDD, all attributes are synthesized
L-Attributed definitions: In a L-attributed SDD, attributes may be inherited or
synthesized. However, inherited attributes at a parse-tree node may depend only
on inherited attributes of its parent and on (any) attributes of siblings to its left
Syntax trees: Each node in a syntax tree represents a construct; the children of
the node represent the meaningful components of the construct

161
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Intermediate representation: An intermediate representation is typically some
combination of a graphical notation and three-address code. As in syntax, a node
in a graphical notation represents a construct; the children of a node represent its
subconstructs. Three address code takes its name from instructions of the form x

= y op z, with at most one operator per instruction. There are additional
instructions for control flow

Translate expressions: Expressions with built-up operations can be unwound into a
sequence of individual operations by attaching actions to each production of the
form E → E1opE2. The action either creates a node for E with the nodes for E1

and E2 as children, or it generates a three-address instruction that applies op to
the addresses for E1 and E2 and puts the result into a new temporary name,
which becomes the address of E

162
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Check types: The type of an expression E1 op E1 is determined by the operator
op and the types of E1 and E2. A coercion is an implicit type conversion.
Intermediate code contains explicit type conversions to ensure an exact match
between operand types and the types expected by an operator

Generate jumping code for boolean expression: In short-circuit or jumping code,
the value of a boolean expression is implicit in the position reached in the code.
Jumping code is useful because a boolean expression B is typically used to
t=true or t=false, as appropriate, where t is a temporary name. Using labels
for jumps, a boolean expression can be translated by inheriting labels
corresponding to its true and false exits attributes. The constants true and false
translate into a jump to the true and false attributes, respectively

163
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Implement statements using control flow: Statements can be translated by
inheriting a label next, where next marks the first instruction after the code for
this statement. The conditional ⟨S⟩ → if(⟨B⟩)⟨S⟩ can be translated by attaching
a new label marking the beginning of the code for S and passing the new label
and S.next for the true and false attributes, respectively, of B

Alternatively, use backpatching: Backpatching is a technique for generating code
for boolean expressions and statements in one pass. The idea is to maintain lists
of incomplete jumps, where all the jump instructions on a list have the same
target. When the target becomes known, all the instructions on its list are
completed by filling in the target

Implement records: Field names in a record or class can be treated as a sequence
of declarations. A record type encodes the types and relative addresses of the
fields. A symbol table object can be used for this purpose

164
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53Bibliography of the Chapter (#1)

Brooker, R. and Morris, D. (1962).
A general translation program for phrase structure languages.
J. ACM, 9(1):1–10.

Gosling, J. (1995).
Java intermediate bytecodes.
In ACM SIGPLAN Workshop on Intermediate Representations.

Irons, E. (1961).
A syntax-directed compiler for ALGOL 60.
Comm. ACM, 4(1):51–55.

Jazayeri, M., Ogden, W., and Rounds, W. (1975).
The intrinsic exponential complexity of the circularity problem for attribute grammars.
Comm. ACM, 18(12):697–706.

Johnson, S. (1979).
A tour through the portable C compiler.
Technical report, Bell Telephone Laboratories Inc., Murray Hill, N.J.

Knuth, D. (1968).
Semantics of context-free languages.
Mathematical Systems Theory, 2(2):127–145.

Lewis, P., Rosenkrantz, D., and Stearns, R. (1974).
Attributed translations.
J. Computer and System Sciences, 9(3):279–307.

165
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53Bibliography of the Chapter (#2)

Milner, R. (1978).
A theory of type polymorphism in programming.
J. Computer and System Sciences, 17(3):348–375.

Paakki, J. (1995).
Attribute grammar paradigms – a high-level methodology in language implementation.
Computing Surveys, 27(2):196–255.

Pierce, B. (2002).
Types and Programming Languages.
MIT Press, Cambridge.

Ritchie, D. (1979).
A tour through the portable UNIX C compiler.
Technical report, Bell Telephone Laboratories Inc., Murray Hill, N.J.

Samelson, K. and Bauer, F. (1960).
Sequential formula translation.
Comm. ACM, 3(2):76–83.

Strong, J., Wegstein, J., Tritter, A., Olsztyn, J., Mock, O., and Steel, T. (1958).
The problem of programming communication with changing machines: a proposed solution.
Comm. ACM, 1(8):12–18.

Wirth, N. (1971).
The design of a pascal compiler.
Software - Practice and Experience, 1(1):309–333.

166
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53Bibliography of the Chapter (#3)

167
MEMBRE DEIntroduction Translation scheme Syntax tree and graph Three-address code Generation of variables

Generation of statements Conclusion

DA53

Chapter 5
Run-time Environments

Stéphane GALLAND

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management

5 Garbage collection

6 Conclusion

2
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management

5 Garbage collection

6 Conclusion

3
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53RUN-TIME ENVIRONMENTS

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent
Code Optimizer

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Intermediate representation

Target-machine code

Target-machine code

Intermediate Code
Generator

Code Generator

Compiler implements
abstractions from source
language

Compiler cooperates with
operating system and other
systems software to support
these abstracts on the
target machine

Compiler creates and
manages a run-time
environment in which it
assumes its target programs
are being executed

4
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53CONTENT OF THIS CHAPTER

Heap

Management of dynamic
memory allocation

Stack

Management of static
memory allocation

Dynamic Memory
Deallocation

Management of deallocation

5
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management

5 Garbage collection

6 Conclusion

6
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53STORAGE ORGANIZATION

Target program runs
in its own logical
address space in which
each value has a
location

Operating system
maps the logical
addresses into physical
addresses

Virtual machine
represents the
operating system and
the target machine
into an abstract and
platform-independent
machine

7
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STRUCTURE OF THE LOGICIAL ADDRESS SPACE

[R
a
n
d
el
l
a
n
d
R
u
ss
el
,
1
9
6
4
]

In the run-time environment, logical address space has a structure; typically:

Code

Static Data

Heap

Stack

Free Memory

n

0

8
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STRUCTURE OF THE LOGICIAL ADDRESS SPACE

In the run-time environment, logical address space has a structure; typically:

Code

Static Data

Heap

Stack

Free Memory

n

0

Compiler places executable target code in a statically
determined area, named Code

Contains binary representations of the instructions to execute

Format of the code depends on the target machine: Intel
binary assembler, byte code. . .

8
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STRUCTURE OF THE LOGICIAL ADDRESS SPACE

In the run-time environment, logical address space has a structure; typically:

Code

Static Data

Heap

Stack

Free Memory

n

0

Size of some program data may be known at compile time

Area where these data are stored in named Static Data,
usually put just after the Code area

Examples: string literals, global constants and variables,
information related to garbage collection. . .

Address of static data is directly put in the code

8
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STRUCTURE OF THE LOGICIAL ADDRESS SPACE

In the run-time environment, logical address space has a structure; typically:

Code

Static Data

Heap

Stack

Free Memory

n

0

Stack is used to store data structures, named activation
records

Activation records are generated during the
procedure/function calls (explained later)

Each record contains the status of the machine: ordinal
counter, machine registers, and data whose lifetimes are the
same as the activation time (usually local variables)

8
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STRUCTURE OF THE LOGICIAL ADDRESS SPACE

In the run-time environment, logical address space has a structure; typically:

Code

Static Data

Heap

Stack

Free Memory

n

0

Many languages allow the programmer to allocates and
deallocates data under program control (malloc, new. . .)

Heap is used to manage this kind of long-lived data

8
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STRUCTURE OF THE LOGICIAL ADDRESS SPACE

In the run-time environment, logical address space has a structure; typically:

Code

Static Data

Heap

Stack

Free Memory

n

0

Heap and the stack are growing up and consume the free
memory space between them

When the stack cannot grow up, the classical “stack
overflow” error is fired

When the heap cannot grow up, the classical “out of
memory” error is fired

8
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STATIC VS. DYNAMIC STORAGE ALLOCATION

Static Storage Allocation

Made by the compiler looking only at the text of the program, not
at what the program does when it executes
Allocation is usually done on the static data area

Dynamic Storage Allocation

Made only while the program is running
Allocation may be on the stack or the heap (see next slide)

9
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53DYNAMIC STORAGE ALLOCATION STRATEGIES

[R
a
n
d
el
l
a
n
d
R
u
ss
el
,
1
9
6
4
]

Stack Storage

Local-scope names are allocated space on a stack

Stack serves the normal call/return policy for procedures

Heap Storage

Data that may outlive the call to the procedure that created it is
usually allocated on a “heap” of reusable storage.

The heap is an area of virtual memory that allows data to obtain and
release storage.

Garbage collection: the run-time environment detects useless data in
heap and releases them.

10
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management
Stack allocation
Access to nonlocal data on the stack

4 Heap management

5 Garbage collection

6 Conclusion

11
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management
Stack allocation

General Principles
Activation tree
Control stack and activation record
Calling sequence
Variable-length data on the stack

Access to nonlocal data on the stack

4 Heap management

5 Garbage collection

6 Conclusion
12

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53STACK ALLOCATION

[R
a
n
d
el
l
a
n
d
R
u
ss
el
,
1
9
6
4
]

Compilers that use procedures, functions, or methods as units manage a part of
their run-time memory as a stack

Procedure will be used as a generic term for procedure, function and method

When procedure is
called
Space for its local
variables is pushed on
stack

When procedure
terminates
Space is popped from
stack

Procedure activation
≡
Procedure call

13
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53NESTED ACTIVATION IN TIME

Stack allocation would not be feasible if procedure calls did not nest in time

If an activation of procedure p calls procedure
q, then that activation of q must end before
the activation of p can end

Activation of main()

Activation of quicksort()

...
Activation of quicksort()

t

i n t a [1 1] ;
vo id r e adAr r ay () {

i n t i ; // read and f i l l a
}
i n t p a r t i t i o n (i n t m, i n t n) {

// l e t v , a [m. . p=1] < v , a [p]=v , a [p+1. . n] >= v
// r e t u r n p

}
vo id q u i c k s o r t (i n t m, i n t n) {

i n t i ;
i f (n>m) {

i = p a r t i t i o n (m, n) ;
q u i c k s o r t (m, i=1) ;
q u i c k s o r t (i +1,n) ;

}
}
main () {

r e adAr r ay () ;
a [0] = =9999;
a [1 1] = 9999 ;
q u i c k s o r t (1 , 9) ;

}

14
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53TERMINATION OF NESTED ACTIVATION

Three common cases when p calls q

Normal: activation of q terminates normally
Then in many languages, control resumes just after the point of p at which the call
to q was made

Abort: activation of q, or some procedure called by q, either directly or indirectly,
aborts
p ends simultaneously with q

Exception: activation of q terminates because of an exception that q cannot handle
Procedure p may handle the exception: activation of q has terminated but p

continues (not necessary where q was called)
If p cannot handle the exception, then this activation of p terminates at the same
time as the activation of q, and exception will be handled by some other open
activation of a procedure

15
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management
Stack allocation

General Principles
Activation tree
Control stack and activation record
Calling sequence
Variable-length data on the stack

Access to nonlocal data on the stack

4 Heap management

5 Garbage collection

6 Conclusion
16

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53ACTIVATION TREE

Definition

Activations of procedures during the running is represented by a tree, where:

Node: an activation

Root Node: activation of the “main” procedure

Child Node: activations of the procedures called by the activation represented by
the parent node
The order of the children (from left to right) is the order of the activations

17
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF ACTIVATION TREE

main

quicksort(1,9)readArray

partition(1,9) quicksort(1,3) quicksort(5,9)

partition(1,3) partition(5,9)quicksort(1,0) quicksort(2,3) quicksort(5,5) quicksort(7,9)

partition(2,3) partition(7,9)quicksort(2,1) quicksort(3,3) quicksort(7,7) quicksort(9,9)

18
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management
Stack allocation

General Principles
Activation tree
Control stack and activation record
Calling sequence
Variable-length data on the stack

Access to nonlocal data on the stack

4 Heap management

5 Garbage collection

6 Conclusion
19

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53CONTROL STACK AND ACTIVATION RECORD

Activation Record

List of information that are describing a procedure activation

Control Stack

Stack used for managning the procedure calls and returns
Each live activation has an activation record (or frame) on the control stack

Entire sequence of activation records on the stack is the path in the activation
tree to the activation where control currently resides

Latter activation has its record at the top of the stack

20
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF CONTROL STACK

main

quicksort(1,9)readArray

partition(1,9) quicksort(1,3) quicksort(5,9)

partition(1,3) partition(5,9)quicksort(1,0) quicksort(2,3) quicksort(5,5) quicksort(7,9)

partition(2,3) partition(7,9)quicksort(2,1) quicksort(3,3) quicksort(7,7) quicksort(9,9)
main

quicksort(1,9)

quicksort(1,3)

0

quicksort(2,3)

partition(2,3)

...

21
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STRUCTURE OF THE ACTIVATION RECORD

Contents of activation records vary with the language being implemented; typically:

Temporaries

Local Data

Saved Machine Status

m

m+k

Access Link

Control Link

Returned Values

Actual Parameters

22
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STRUCTURE OF THE ACTIVATION RECORD

Contents of activation records vary with the language being implemented; typically:

Temporaries

Local Data

Saved Machine Status

m

m+k

Access Link

Control Link

Returned Values

Actual Parameters

Temporary values tk

Arising from the evaluation of expressions

Only in case where the temporaries cannot be held in
processor registers

22
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STRUCTURE OF THE ACTIVATION RECORD

Contents of activation records vary with the language being implemented; typically:

Temporaries

Local Data

Saved Machine Status

m

m+k

Access Link

Control Link

Returned Values

Actual Parameters

Local data declared in activated procedure

22
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STRUCTURE OF THE ACTIVATION RECORD

Contents of activation records vary with the language being implemented; typically:

Temporaries

Local Data

Saved Machine Status

m

m+k

Access Link

Control Link

Returned Values

Actual Parameters

Information about the state of the machine just before the
call to the procedure

It typically includes:

Return address: value of the ordinal counter to which
the called procedure must return
Registers: Contents of registers that were used by the
calling procedure and that must be restored when the
return occurs

22
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STRUCTURE OF THE ACTIVATION RECORD

Contents of activation records vary with the language being implemented; typically:

Temporaries

Local Data

Saved Machine Status

m

m+k

Access Link

Control Link

Returned Values

Actual Parameters

“Access link” to locate data needed by the called procedure
found elsewhere (in another activation record. . .)

22
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STRUCTURE OF THE ACTIVATION RECORD

Contents of activation records vary with the language being implemented; typically:

Temporaries

Local Data

Saved Machine Status

m

m+k

Access Link

Control Link

Returned Values

Actual Parameters

“Control link” is pointing to the activation record of the
caller

22
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STRUCTURE OF THE ACTIVATION RECORD

Contents of activation records vary with the language being implemented; typically:

Temporaries

Local Data

Saved Machine Status

m

m+k

Access Link

Control Link

Returned Values

Actual Parameters

Space for the return value of the called function, if any

Not all called procedures return a value

We may prefer to place that value in a register for efficiency

22
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STRUCTURE OF THE ACTIVATION RECORD

Contents of activation records vary with the language being implemented; typically:

Temporaries

Local Data

Saved Machine Status

m

m+k

Access Link

Control Link

Returned Values

Actual Parameters

Actual parameters are given by the caller and used by the
callee procedure

Commonly, these values are not placed in the activation
record but rather in registers, when possible

22
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management
Stack allocation

General Principles
Activation tree
Control stack and activation record
Calling sequence
Variable-length data on the stack

Access to nonlocal data on the stack

4 Heap management

5 Garbage collection

6 Conclusion
23

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53INTRODUCTION TO CALLING AND RETURN SEQUENCES

[J
o
h
n
so
n
a
n
d
R
it
ch

ie
,
1
9
8
1
]

Calling Sequence

A code that allocates an activation record on the stack and enters information into its
fields

Return Sequence

A code that deallocates an activation record from the stack and restores the state of
the machine

Calling sequences and the layout of activation records may differ greatly,
even among implementations of the same language

24
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53PRINCIPLES OF THE CALLING SEQUENCES

[R
a
n
d
el
l
a
n
d
R
u
ss
el
,
1
9
6
4
]Parameter & Return

Values
m

C
al

le
e

C
al

le
r

1 Values communicated between caller and callee procedures are generally placed at
the beginning of the callee activation record

Caller can compute the actual parameters and
put them at the top of the stack, without the
necessity to create the entire record of the callee,
and knowing how the callee’s record layout is

Caller knows where to put the return value,
relative to its own record

25
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53PRINCIPLES OF THE CALLING SEQUENCES

Parameter & Return
Values

m

C
al

le
e

C
al

le
r

Control & access links,
Machine status

2 Fixed-length items are placed in the middle of the record

If machine status are standardized, then
programs such as debuggers will have an easier
time deciphering the stack contents if an error
occurs

25
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53PRINCIPLES OF THE CALLING SEQUENCES

Parameter & Return
Values

m

C
al

le
e

C
al

le
r

Control & access links,
Machine status

Local data & Temps

3 Items those size may not be known early enough are placed at the end of the
activation record

Most of the variables have a size that can be
determined by the compiler. But some cannot
(dynamic arrays. . .)

Amount of space needed for temporaries is not
known during the first phase of the intermediate
code generation

25
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53PRINCIPLES OF THE CALLING SEQUENCES

Parameter & Return
Values

m

C
al

le
e

C
al

le
r

Control & access links,
Machine status

Local data & Temps
top_sp

4 “Top-of-stack” pointer must be located judiciously

Commonly, it points to the end of the fixed-
length fields in the activation record

Control link points to the “top-of-stack” of the
previous record

Fixed-length data can then be accessed by a
fixed negative offset, and variable-length with a
run-time positive offset

25
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53TYPICAL CALLING SEQUENCE

1 Caller evaluates and stores the actual parameters

2 Caller stores a return address,
stores the old value of top sp into the callee’s, activation record
increments top sp to point to the callee activation record

3 Callee saves the register values and other status information

4 Callee initializes its local data and begins execution

C
al
le
r

C
al
le
e

26
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53TYPICAL RETURN SEQUENCE

1 Callee places the return value next to the parameters

2 Using information in the machine-status fields, callee restores top sp and other
registers,
branches to the return address that the caller placed in the status field

3 Although top sp has been decremented, the caller knows where the return value
is, relative to the current value of top sp
Caller may use that value

C
al
le
e

C
al
le
r

27
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management
Stack allocation

General Principles
Activation tree
Control stack and activation record
Calling sequence
Variable-length data on the stack

Access to nonlocal data on the stack

4 Heap management

5 Garbage collection

6 Conclusion
28

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53VARIABLE-LENGTH DATA

Local Variable-length Data

Programs contain a lot of data whose sizes are known at run-time; but which are
local to a procedure

Because they are local to the procedure, they may be allocated on the stack

In most of the modern languages, these objects are allocated in the heap
However, it is also possible to allocate objects, arrays, or other data structures of
unknown size on the stack

Why on the stack?

Avoiding the expense of garbage collecting the space allocated for the variable-length
data.

29
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53ALLOCATION STRATEGY

Below, example of programs in C99 and C# in which a local array is declared
Its size depends on the value of the procedure parameter

/* C99 */
vo id myFunction (i n t n) {

f l o a t l o c a l A r r a y [n] ;
/* Do someth ing */

}

/* C# */
unsa fe vo id myFunction (i n t n) {

i n t * l o c a l A r r a y = s t a c k a l l o c i n t [n] ;
/* Do someth ing */

}

The common strategy is to:

1 Allocate the arrays at the end of the record

2 Put pointers to the allocated regions in the
local data

Parameter & Return
Values

Control & access links,
Machine status

...
Pointer to localArray

...
Data of localArray

top_sp

top

30
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53POINTERS TOP AND TOP SP

top
Marks the actual top of the stack

It points to the position at which the
next activation record will begin

top sp
Used to find local, fixed-length fields of

the top activation record
Parameter & Return

Values

Control & access links,
Machine status

...
Pointer to localArray

...
Data of localArray

top_sp

top

top ← top sp - length(fixed record part)

31
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management
Stack allocation
Access to nonlocal data on the stack

4 Heap management

5 Garbage collection

6 Conclusion

32
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53ACCESS TO NONLOCAL DATA ON THE STACK

How could procedure p access to data defined outside p?

Programs without
nested procedures

Programs with nested
procedures

33
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management
Stack allocation
Access to nonlocal data on the stack

Data access without nested procedure
Issues with nested procedures
Nesting depth
Access links
Passing procedure as parameter
Displays

4 Heap management

5 Garbage collection

6 Conclusion 34
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53DATA ACCESS WITHOUT NESTED PROCEDURES

Many languages (C. . .) disallow nested procedures

Storage Allocation

Global variables are allocated in the static storage: locations remain fixed and are
known at compile time

Any other name must be local to the activation at the top of the stack: locations
are relative to the top sp pointer in stack

35
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management
Stack allocation
Access to nonlocal data on the stack

Data access without nested procedure
Issues with nested procedures
Nesting depth
Access links
Passing procedure as parameter
Displays

4 Heap management

5 Garbage collection

6 Conclusion 36
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53LANGUAGE WITH NESTED PROCEDURE DECLARATIONS

Many languages enable to declare procedures inside the scope of another procedure
(Algol60, Pascal, ML, LISP)

Factorial Function,
non-tail-recursion
algorithm

Factorial Function,
tail-recursion algorithm

(d e f f u n f a c t o r i a l (n)
(i f (<= n 1)

1
(* n f a c t o r i a l (= n 1))))

(d e f f u n f a c t o r i a l (n)
(l e t ((d e f f u n f a c t (n , acc)

(i f (<= n 1) acc
(f a c t (= n 1) (* n acc))))
(f a c t n 1)))

37
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53ISSUE WITH NESTED PROCEDURES

With nested procedure declaration, it is more complicated to determine the
addresses of the names used in the procedure

Example

Let the procedure g declared inside the scope of the
procedure p

g is accessing to the variable a, locally declared in p

It is difficult to determine at compile time where is the
variable a in the stack, because of the recursive calls

The address of a in the stack can be determined only at
run-time

Procedure p(n)
begin

Declare a ← n/2;
Procedure g()
begin

if n > 1 then p(n-1);
else if n = 1 then p(a/2);

end
g() ;

end

38
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF THE ISSUE

main
4

Activation Record Data

8
Activation Record Data

3
Activation Record Data

6
Activation Record Data

2
Activation Record Data

4
Activation Record Data

p

p

p

g

g

g

n

a

n

a

n

a
Procedure p(n)
begin
 Declare a = n*2;
 Procedure g()
 begin
 if (n>1) then p(n-1);
 else if (n=1) then
 p(a/2);
 end
 g() ;
end

p(4)

?

39
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management
Stack allocation
Access to nonlocal data on the stack

Data access without nested procedure
Issues with nested procedures
Nesting depth
Access links
Passing procedure as parameter
Displays

4 Heap management

5 Garbage collection

6 Conclusion 40
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53DEFINITION OF NESTING DEPTH

Nesting Depth

1: p is declared outside another procedure

n: p is declared inside a procedure with nesting depth n − 1

Procedure p(n)
begin

Declare a ← n/2;
Procedure g()
begin

if n > 1 then
p(n-1);

;
else if n = 1 then
p(a/2);

;

end
g() ;

end

p has nesting depth 1

g has nesting depth 2

41
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management
Stack allocation
Access to nonlocal data on the stack

Data access without nested procedure
Issues with nested procedures
Nesting depth
Access links
Passing procedure as parameter
Displays

4 Heap management

5 Garbage collection

6 Conclusion 42
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53ACCESS LINK

Definition

Access link provides a mean for the implementation of the static scope rule for nested function

If procedure g is immediately nested in procedure p; then the access link in any activation of g
points to the most recent activation of p

Nesting depth of p must be exactly one less than the nesting depth of g

4
Activation Record Data

8
Access Link

p

g Control Link Activation
Record
Data

Procedure p(n)
begin

Declare a← n/2;
Procedure g()
begin

if n > 1 then p(n-1);
;
else if n = 1 then p(a/2);
;

end
g() ;

end

43
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53CHAIN OF ACCESS LINKS

Definition

Access links form a chain from the activation record at the top of the stack to
activations at lower nesting depths

Along this chain, all data declared in the procedures are accessible to the
currently executing procedure

44
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF ACCESS LINKS

4

Access Link

Control Link

sqrt
q

Procedure sqrt(q)
begin

Procedure babylonian algo(a,n)
begin

Declare a;
b ← (a + q/a) / 2;
if n > 0 then

return b;
else

return babylonian algo(a,n-1);
end

end
return babylonian algo(q/2, 10);

end
sqrt(5);

45
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF ACCESS LINKS

4

Access Link

Control Link

sqrt
q

2.5

babylonian
_algo

10

Access Link

2.25

Control Link

a
n

b

Procedure sqrt(q)
begin

Procedure babylonian algo(a,n)
begin

Declare a;
b ← (a + q/a) / 2;
if n > 0 then

return b;
else

return babylonian algo(a,n-1);
end

end
return babylonian algo(q/2, 10);

end
sqrt(5);

45
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF ACCESS LINKS

4

Access Link

Control Link

sqrt
q

2.5

babylonian
_algo

10

Access Link

2.25

Control Link

a
n

b
2.25

9

Access Link

Control Link

2.236111

a
n

b

babylonian
_algo

Procedure sqrt(q)
begin

Procedure babylonian algo(a,n)
begin

Declare a;
b ← (a + q/a) / 2;
if n > 0 then

return b;
else

return babylonian algo(a,n-1);
end

end
return babylonian algo(q/2, 10);

end
sqrt(5);

45
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF ACCESS LINKS

4

Access Link

Control Link

sqrt
q

2.5

babylonian
_algo

10

Access Link

2.25

Control Link

a
n

b
2.25

9

Access Link

Control Link

2.236111

a
n

b

babylonian
_algo

2.236111

8

Access Link

Control Link

2.236067

a
n

b

babylonian
_algo

To access to the value of q, we know
at compile time, that it is reachable
after one dereferencing in the access
link pointer chain

Procedure sqrt(q)
begin

Procedure babylonian algo(a,n)
begin

Declare a;
b ← (a + q/a) / 2;
if n > 0 then

return b;
else

return babylonian algo(a,n-1);
end

end
return babylonian algo(q/2, 10);

end
sqrt(5);

45
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53DETERMINING THE ACCESS LINK TARGET

Let the procedure q calling p.

Let Nα the nesting depth of α.

Let Dβ the set of the nesting procedures in which β is defined.

First Case

(Np > Nq)⇒ (q ∈ Dp ∧ Np = Nq + 1)

Then the access link from p leads to q.

46
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53DETERMINING THE ACCESS LINK TARGET

Let the procedure q calling p.

Let Nα the nesting depth of α.

Let Dβ the set of the nesting procedures in which β is defined.

Second Case

(Np ≤ Nq)⇒
(
∃r

∣∣∣∣ (
r ∈ Dp ∧ Np = Nr + 1∧

r ∈ Dq ∧ Nr > Nq

))
Then

The access link from p leads to r.

There is Nq − Np + 1 access links from q to r.

Include recursive calls, where p = q.

47
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management
Stack allocation
Access to nonlocal data on the stack

Data access without nested procedure
Issues with nested procedures
Nesting depth
Access links
Passing procedure as parameter
Displays

4 Heap management

5 Garbage collection

6 Conclusion 48
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53PASSING A PROCEDURE AS PARAMETER

A procedure p is passed to another procedure q as a parameter; q calls its parameter

Problem

If q does not know the context in which p appears in the program;

it is impossible for q to know how to set the access link for p

Solution

Caller of a procedure with a procedure as parameter must also pass the proper
access link to the parameter

i.e. caller must pass the name and the access link as parameters

49
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF A PROCEDURE PASSING AS PARAMETER

???

Access Link

Control Link

a
x

Function a is called

(defun a(x)
(let ((defun b(f)

(. . . f . . .)
)
(defun c(y)

(let ((defun d(z) (. . .)))
(. . . (b d) . . .)

)
)
)
(. . . (c 1) . . .)

)
)

50
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF A PROCEDURE PASSING AS PARAMETER

???

Access Link

Control Link

a
x

c
1

Access Link

Control Link

y

Function c is called
According to the first case, access link
leads to a

(defun a(x)
(let ((defun b(f)

(. . . f . . .)
)
(defun c(y)

(let ((defun d(z) (. . .)))
(. . . (b d) . . .)

)
)
)
(. . . (c 1) . . .)

)
)

50
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF A PROCEDURE PASSING AS PARAMETER

???

Access Link

Control Link

a
x

c
1

Access Link

Control Link

y

b
P<d, >

Access Link

Control Link

f

Function b is called with the procedure
d as parameter
According to the second case, access
link leads to a

Context of d is also passed as
parameter

(defun a(x)
(let ((defun b(f)

(. . . f . . .)
)
(defun c(y)

(let ((defun d(z) (. . .)))
(. . . (b d) . . .)

)
)
)
(. . . (c 1) . . .)

)
)

50
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF A PROCEDURE PASSING AS PARAMETER

???

Access Link

Control Link

a
x

c
1

Access Link

Control Link

y

b
P<d, >

Access Link

Control Link

f

f d
???

Access Link

Control Link

z

Function d is called through the
parameter f. The access link is directly
taken from the context PO

(defun a(x)
(let ((defun b(f)

(. . . f . . .)
)
(defun c(y)

(let ((defun d(z) (. . .)))
(. . . (b d) . . .)

)
)
)
(. . . (c 1) . . .)

)
)

50
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management
Stack allocation
Access to nonlocal data on the stack

Data access without nested procedure
Issues with nested procedures
Nesting depth
Access links
Passing procedure as parameter
Displays

4 Heap management

5 Garbage collection

6 Conclusion 51
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53PROBLEM WITH ACCESS LINKS

If the nesting depth gets large, we may have to follow long chains
of links to reach the data we need

52
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53DISPLAY: A SOLUTION TO THE ACCESS LINK PROBLEM

[D
ij
k
st
ra
,
1
9
6
0
]

Use of an auxiliary array d, called the display

Display d

Collection (e.g., array) of pointers, one for each nesting depth

d [i] is a pointer to the highest activation record on the stack for any procedure at
nesting depth i

53
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53ADVANTAGES OF DISPLAYS

Direct access to a context at compile time

Compiler knows what i is, so it can generate code to access x using d[i] and the
offset of x from the top of the activation record for q

Direct access to a context at run-time

If procedure p is executing, and it needs to access element x belonging to some
procedure q, we need to look only in d[i], where i is the nesting depth of q

Limited Chain

Code never needs to follow a long chain of access links

54
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53MAINTAINING THE DISPLAYS WHEN CREATING RECORDS

Inputs : Stack s; called procedure p; nesting depth of p is Np

begin
PO of p ← d [Np] ;
if d [Np] ̸= any activation record of p then

d [Np] ← activation record of p
end

end

55
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF DISPLAYS

???

Saved Display:

Control Link

a
x

P
d[3]

d[2]

d[1]

The displays are pointing somewhere
in the stack
Function a is called
Create the record
Save d[1], which is pointing on a
lower activation record

(defun a(x)
(let ((defun b(f)

(. . . f . . .)
)
(defun c(y)

(let ((defun d(z) (. . .)))
(. . . (b d) . . .)

)
)

)
(. . . (c 1) . . .)

)
)

56
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF DISPLAYS

???

Saved Display:

Control Link

a
x

P
d[3]

d[2]

d[1]

Because d[1] is not pointing to the
record of a, change d[1]

(defun a(x)
(let ((defun b(f)

(. . . f . . .)
)
(defun c(y)

(let ((defun d(z) (. . .)))
(. . . (b d) . . .)

)
)

)
(. . . (c 1) . . .)

)
)

56
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF DISPLAYS

???

Saved Display:

Control Link

a
x

P
d[3]

d[2]

d[1]c
1

Saved Display:

Control Link

y
P

Function c is called
Its record is created
The previous value of d[2] is saved

(defun a(x)
(let ((defun b(f)

(. . . f . . .)
)
(defun c(y)

(let ((defun d(z) (. . .)))
(. . . (b d) . . .)

)
)

)
(. . . (c 1) . . .)

)
)

56
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF DISPLAYS

???

Saved Display:

Control Link

a
x

P
d[3]

d[2]

d[1]c
1

Saved Display:

Control Link

y
P

Because the record of c is not the one
pointed by d[2], set d[2] to leads to
c

(defun a(x)
(let ((defun b(f)

(. . . f . . .)
)
(defun c(y)

(let ((defun d(z) (. . .)))
(. . . (b d) . . .)

)
)

)
(. . . (c 1) . . .)

)
)

56
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF DISPLAYS

???

Saved Display:

Control Link

a
x

P
d[3]

d[2]

d[1]c
1

Saved Display:

Control Link

y
P

b
P<d, >

Saved Display:

Control Link

f
P

Function b is called
Parameter f is set to value of d[2]

Save the d[2], and set its value to
leads to b

(defun a(x)
(let ((defun b(f)

(. . . f . . .)
)
(defun c(y)

(let ((defun d(z) (. . .)))
(. . . (b d) . . .)

)
)

)
(. . . (c 1) . . .)

)
)

56
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF DISPLAYS

???

Saved Display:

Control Link

a
x

P
d[3]

d[2]

d[1]c
1

Saved Display:

Control Link

y
P

b
P<d, >

Saved Display:

Control Link

f
P

f d
???

Saved Display:

Control Link

z
P

Function d is called through the
parameter f
Displays are updated

(defun a(x)
(let ((defun b(f)

(. . . f . . .)
)
(defun c(y)

(let ((defun d(z) (. . .)))
(. . . (b d) . . .)

)
)

)
(. . . (c 1) . . .)

)
)

56
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF DISPLAYS

???

Saved Display:

Control Link

a
x

P
d[3]

d[2]

d[1]c
1

Saved Display:

Control Link

y
P

b
P<d, >

Saved Display:

Control Link

f
P

f d
???

Saved Display:

Control Link

z
P

To obtain the value of x:

Because x is at nesting depth 1,
follows d[1] to reach the right
record

Read the value of x in the record

(defun a(x)
(let ((defun b(f)

(. . . f . . .)
)
(defun c(y)

(let ((defun d(z) (. . .)))
(. . . (b d) . . .)

)
)

)
(. . . (c 1) . . .)

)
)

56
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53MAINTAINING THE DISPLAYS WHEN RETURNING FROM RECORDS

Inputs : Stack s; called procedure p; nesting depth of p is Np

begin
d [Np] ← PO of of p

end

57
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management
Memory manager
Locality in programs
Allocation and deallocation
Manual deallocation

5 Garbage collection

6 Conclusion

58
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53WHAT IS THE HEAP?

Memory Heap

Portion of the memory store that is used for data that lives indefinitely, or until the
program explicitly deletes it

Modern languages provides dedicated operators for the allocation and deallocation
in the heap

Example

new and delete in C++

59
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53HEAP MANAGEMENT

Memory Manager

Subsystem that allocates and deallocates space within the heap

Interface between the application program and the operating system

Garbage Collection

Process of finding spaces within the heap that are no longer used by the program and
can be reallocated

Garbage collector is an important subcomponent of the memory manager

60
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management
Memory manager
Locality in programs
Allocation and deallocation
Manual deallocation

5 Garbage collection

6 Conclusion

61
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53ALLOCATION BY THE MEMORY MANAGER

Produces a chunk of contiguous
memory for each variable or object
associated to the allocation request

If not enough contiguous space is
available for a chunk, it seeks to
increase the heap storage space by
requesting memory to the operating
system

Defragmentation of the heap is generally not implemented

62
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53DEALLOCATION BY THE MEMORY MANAGER

Returns deallocated space to the
pool of free space
Deallocation space may be reused for
future allocations

Typically, memory manager does not
return memory to the operating
system, even if the program’s heap
usage drops

63
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53SPACE EFFICIENCY OF THE MEMORY MANAGER

Space Efficiency Property

Memory manager should minimize the total heap space need by a program

Space efficiency is achieved by minimizing the “fragmentation”
(discussed later)

64
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53PROGRAM EFFICIENCY OF THE MEMORY MANAGER

Program Efficiency Property

Memory manager should make good use of the memory subsystem to allow programs
to run faster

The time taken to execute an instruction can vary widely depending on where
objects are placed in memory

Programs tends to exhibit “locality” (discussed later), which refers to the
nonrandom clustered way in which typical programs access memory

By attention to the placement of objects in memory, the memory manager can
make better use of space, and make the program run faster

65
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53LOW OVERHEAD OF THE MEMORY MANAGER

Because memory allocations and deallocations are frequent operations in many
programs (such as ones written in Java), it is important that these operations be as

efficient as possible

Low Overhead Property

Minimize the overhead, the fraction of execution time spent performing allocation and
deallocation

Overhead of allocation is dominated by a large amount of small requests;
the overhead of managing large objects is less important

66
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EFFICIENCY OF A PROGRAM

Program Efficiency Property

Efficiency of a program is determined by:

1 the number of instructions executed

2 the time taken to execute each of these instructions

Data-intensive programs can therefore benefit significantly from optimizations
that make good use of the memory subsystem

Run-time environment should prefer to use the memory storages close to the
processor, e.g. registers

Concept of “locality” will help us to improve the use of the memory subsystem

67
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management
Memory manager
Locality in programs
Allocation and deallocation
Manual deallocation

5 Garbage collection

6 Conclusion

68
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53CONCEPT OF LOCALITY

Hypothesis / Conventional Wisdom

Programs spend 90% of their time executing 10% of the code

Temporal Locality

Memory locations are likely to be accessed again within a short period of time

Spatial Locality

Memory locations close to the accessed location are to be accessed within a short
period of time

69
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53CONSEQUENCES OF THE LOCALITY

1 Programs often contains many instructions that are never executed

2 After evolution, legacy systems contain many instructions that are no longer used

3 Only a small fraction of the code that could be invoked is actually executed in a
typical run of the program

4 Typical program spends most of its time executing innermost loops and tight
recursive cycles in a program

70
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53MEMORY HIERARCHY

Memory manager (and compiler optimizer) must be aware of how the operating
system is managing its memory
In modern systems, the memory is composed of several layers:

Virtual Memory

Physical Memory

2nd-Level Cache

1st-Level Cache

Registers

> 2 GB 3-15 ms

256 MB-16GB 100-150 ns

128 kB - 4MB 40-60 ns

16-64kB 5-10 ns

32 Words 1 ns

71
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53LOCALITY AND MEMORY HIERARCHY

Locality
permits to take
advantage of
the memory
hierarchy

Placing the
most common
instructions
and data in the
fast-but-small
storage

Leaving the
rest in the
slow-but-large
storage

Minimize the
average
memory-access
time

72
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OPTIMIZATION POLICY

Put the
most-recent-used
instruction in the
fastest memory

Put together in the
same memory
page/block the
instructions that may
be always executed
together

Locality of data can be
improved by changing:
1) the data layout
2) the order of the
computations

Example

Visiting a large amount of data and performing small operations on it is not a
good approach

Preferably, smaller data should be pushed down into a faster memory level, and
perform the computations on them

73
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management
Memory manager
Locality in programs
Allocation and deallocation

Chunks, holes, fragmentation, bins
Allocation of chunk
Deallocation of chunk

Manual deallocation

5 Garbage collection

6 Conclusion
74

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53CHUNKS AND HOLES IN THE HEAP

Memory Chunk

A fragment of memory that is allocated and deallocated as a whole

Size of a chunk depends on the type of object to be allocated

General Principle

At the beginning of the program, the heap is one contiguous unit of free space

As the program allocates and deallocates memory, this space is broken up into
free and used chunks

Memory Hole

Free chunks are named hole

75
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OBJECT PLACEMENT FOR MINIMIZING THE DEFRAGMENTATION

Memory Fragmentation

Alternating chunks and holes is named the fragmentation of the heap

Fragmentation is reduced by controlling how the memory manager places new
objects in the heap

Best-Fit Object
Placement

Allocate in the smallest
available hole that is

large enough
Not good for spatial

locality

First-Fit Object
Placement

Allocate in the first
hole, which is able to
contains the requested

chunk
Less efficient than the

previous one

Next-Fit Object
Placement

When no hole of the
exact size was found,
allocate in the lastly

split hole
Good for spatial

locality and efficient

76
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53BINS

Bin

Free space chunks are grouped into bins according to their sizes

Many bins for the smaller sizes, because there are usually many more small
objects in programs

Lea Memory Manager (GNU C compiler)

Bins of every multiple of 8 bytes until 512 bytes

Larger-sized bins are logarithmically spaced

Within the bins, the chunks are ordered by their sizes

Wilderness chunk: largest bin because its size may be extended after requesting
more memory to OS

77
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management
Memory manager
Locality in programs
Allocation and deallocation

Chunks, holes, fragmentation, bins
Allocation of chunk
Deallocation of chunk

Manual deallocation

5 Garbage collection

6 Conclusion
78

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53ALLOCATION OF A CHUNK

Inputs : Size s of the chunk to be allocated; sorted list S of available sizes of chunks
Output : Allocated chunk c ; or error

begin
if ∃c ∈bins then // Search of a bin of size s

c ← allocate(bins) ;
return c

end
foreach α ∈ S ∪ {wilderness chunk} do // Search for smallest chunk

if ∃c ∈binα then
⟨c , r⟩ ← allocate(binα, s) ; // First-fit or best-fit strategy

β ← α− s ;
binβ ← binβ ∪ r ;
return c

end

end
throw(”Out of memory”)

end

79
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management
Memory manager
Locality in programs
Allocation and deallocation

Chunks, holes, fragmentation, bins
Allocation of chunk
Deallocation of chunk

Manual deallocation

5 Garbage collection

6 Conclusion
80

MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53DEALLOCATION AND COALESCING FREE SPACE

Dealocation of a Chunk

When an object is deallocated, memory manager makes its chunk free

Coalescing of Free Space

It may also be possible to combine (coalesce) the just freed chunk with adjacent chunks

Boundary Tags Double-Linked Free List

81
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53BOUNDARY TAGS

[K
n
u
th
,
1
9
6
8
]

Chunk with Boundary Tags

Bits of the chunk is composed by:

Boundary tags

Chunk data

Boundary tags (again)

Order of tags depends on run-time environment

1 0 1 0 1 01 1 0 1 01

Allocated Chunk

Size of the chunk Size of the chunk
Allocation bit Allocation bit

82
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53DOUBLE-LINKED FREE LIST

Free Chunks in a Double-Linked List

Free chunks (but not the allocated ones) are linked in a double-linked list

Boundary tags include pointers to the previous and next free chunks

Does not need to allocate more space for these pointers: the pointers takes the unused
bytes of the free chunks

For the smaller chunks, they are expanded to allow to contain the pointers

200 0 0 00 124124

Chunk A

200

Chunk B

83
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management
Memory manager
Locality in programs
Allocation and deallocation
Manual deallocation

5 Garbage collection

6 Conclusion

84
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53MANUAL DEALLOCATION

Any storage that will no longer be accessed should be deleted

Any storage that may be referenced must not be deleted

It is hard to enforce these properties

Two common errors may occurs in manual memory management:

1 Memory Leak: failing ever to delete data that cannot be referenced

2 Dangling-pointer reference: referencing deleted data

85
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53MEMORY LEAK PROBLEM

Observation

Hard for a developer to tell if a program will never refer to some storage in the future

Common mistake is not deleting storage that will no more referenced

Problem

May slow down the execution of the program due to increased memory usage

Remarks

Correctness of the program is not changed

Many programs may tolerate leaks but not the long-time and critical ones (operating
systems, server code. . .)

86
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53SOLVING THE MEMORY LEAK PROBLEM

1 Automatic garbage collection gets rid of memory leaks by deallocating all the
garbage
Even with a garbage collector, programs may still use more memory than
necessary

2 A programmer may know that an object will never be referenced
He must deliberately remove the references to objects that will never be
referenced, so the objects can be deallocated automatically

87
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53PROBLEM OF DANGLING-POINTER REFERENCE

Observation

Deletion of a storage, and then referencing the deleted storage

These pointers are named “dangling pointers”

Problem

When the storage has been reallocated, it produces random effects on the program

Writing through a dangling pointer changes another variable than the expecting one by
the dangling pointer

Remarks

Read, write or deallocate a pointer is named “dereferencing the pointer”

88
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53SOLVING THE DANGLING-POINTER-REFERENCE PROBLEM

Unfortunately, there is no “magic” solution

1 Programmer must be aware and may pay attention to his uses of the pointers

2 Dangling-pointer-dereference error does not occurs in run-time environments that
have an automatic garbage collector

89
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53ILLEGAL ADDRESS ERROR

Definition

Occurs when the address to dereference is null or outside the bounds of any allocated
memory (including the bounds of the memory space of the process)

Related to the dangling-pointer-dereference error

At the origin of many security violations from hackers

Solution

Compiler inserts checks with every access, to make sure it is within the bounds

Compiler optimizer may remove several of these checks when they are detected as
not necessary

90
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53PROGRAMMING CONVENTIONS AND TOOLS

Object Ownership

Associate an owner with each object at all times:

Usually a function
Responsible for either deleting the object or for passing the object to another owner

Non-owning pointers may reference the object, but the object must never be
deallocated through them

Eliminates memory leaks

Eliminates deletion of the same object twice

Does not solve the dangling-point-reference problem

91
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53PROGRAMMING CONVENTIONS AND TOOLS (CONT.)

Reference Counting

Associate a counter with each dynamically allocated object:

counter is incremented when object use is added
counter is decremented when object use is deleted

Object is released when the counter is zero

Eliminates memory leaks

Eliminates deletion of the same object twice

Expensive operation

Do not work with inaccessible circular data structures

92
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53PROGRAMMING CONVENTIONS AND TOOLS (CONT.)

Region-Based Allocation

When objects are created to be used only within some step of a computation, we
can allocate all such objects in the same region

Entire region is deleted once the computation step is completed

Very efficient

Limited applicability

93
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management

5 Garbage collection
Properties of a garbage collector
Reachability of data
Reference-counting garbage collector
Trace-based garbage collector
Short-pause garbage collector

6 Conclusion

94
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53INTRODUCTION TO GARBAGE COLLECTION

[W
il
so
n
,
1
9
9
4
]

Many high-level programming languages remove the burden of manual
memory management from the programmer by offering automatic garbage

collection

Garbage Collection (GC)

Process to deallocate no-more referenced storages from the heap

First garbage collection dates from the initial implementation of LISP in 1958

Several languages provide natively a GC: Java, Perl, ML, Modula-3, Prolog,
Smalltalk, C#, Ruby, Python. . .

95
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53HYPOTHESES FOR GARBAGE COLLECTION

1 Garbage collector must know the type of the objects at run-time. This type
permits to determine:

the size of the object in bytes
its components that are references to other objects

2 References to the objects are always to the address of the beginning of these
objects

3 All the references to the same object have the same value and may be identified
easily.

96
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53MUTATOR AND GARBAGE COLLECTION

Mutator

Mutator, i.e., the user program, modifies the collection of objects in the heap

Creates objects by acquiring space from the memory manager

Introduce and drop references to existing objects

Relationship with GC

Objects become garbage when the mutator program cannot “reach” them

GC finds the garbage and reclaims their space to the memory manager

97
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management

5 Garbage collection
Properties of a garbage collector
Reachability of data
Reference-counting garbage collector
Trace-based garbage collector
Short-pause garbage collector

6 Conclusion

98
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53TYPE SAFETY

Source language must be type safe

Type of the data must be known and determined at compile or run-time

GC must be able to determine if a data is a pointer to a chunk

Statically typed languages
Types are determined at
compile time (ML. . .)

Dynamically typed languages
Types are determined at

run-time (Java. . .)

99
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53UNSAFE LANGUAGE

Unsafe languages (C, C++. . .) are bad candidate for GC

In unsafe languages, memory addresses can be manipulated arbitrarily
(pointer arithmetic. . .)
Programs can refer to any location in memory at any time

Consequently, no memory location can be considered to be inaccessible
No storage can ever be reclaimed safely

100
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53PERFORMANCE METRICS

Overall Execution Time

GC should not significantly increase the total run time of an application

Pause Time

Simple GC causes the mutator to pause suddenly for an extremely long
time.
Maximum pause time must be minimized

Space Usage

GC must avoid fragmentation and make the best use of the available
memory

101
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53PERFORMANCE METRICS (CONT.)

Program Locality

GC speed cannot be evaluated solely by its running time

GC controls the placement of data and thus influences the data
locality of the mutator program

GC can improve the mutator’s temporal locality by freeing the space
and reusing it

GC can improve the mutator’s spatial locality by relocating data used
together in the same cache or pages

102
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management

5 Garbage collection
Properties of a garbage collector
Reachability of data
Reference-counting garbage collector
Trace-based garbage collector
Short-pause garbage collector

6 Conclusion

103
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53ROOT SET

Root Set

It refer to all data that can be accessed directly by a program, without having to
dereference any pointer

Example

In Java, the root set is composed of all the static fields and all the variables in the stack

Program can reach any member of its root set at any time
Recursively, any object with a reference that is stored in the field members or
array elements of any reachable object is itself reachable

When an object becomes unreachable, it will never be reachable again

104
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53BASIC OPERATIONS TO CHANGE THE ROOT SET

Object Allocation

Performed by the memory manager

Memory manager returns a reference to each newly allocated chunk of memory

This operation adds members to the set of reachable objects.

Parameter Passing and Return Values

References to objects are passed from the actual input parameter to the
corresponding formal parameters; and from the returned result back to the caller

Objects pointed by these references remain reachable

105
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53BASIC OPERATIONS TO CHANGE THE ROOT SET (CONT.)

Reference Assignments

Assignments x = y (x and y are references) have two effects:

1 x is a now a reference to the object referred by y

Referenced object by x and y is reachable while x or y is reachable
2 Original reference of x is lost

If this lost reference is the last on the object, the object becomes unreachable

When an object becomes unreachable, all the reachable objects inside becomes
unreachable also

106
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53BASIC OPERATIONS TO CHANGE THE ROOT SET (CONT.)

Procedure returns

As a procedure exists, the activation record holding its local variables is popped
off from the stack

If the activation record holds the only reachable reference to any object, that
object becomes unreachable

If the now unreachable objects holds the only references to other objects, they
become unreachable too, and so on

107
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53HOW FINDING UNREACHABLE OBJECTS?

Approach #1

Transitions from reachability to unreachability are catched, or
reachable objects are periodically located;
assuming that all the other objects are not reachable

Reference counting is an approximation of the first approach:

Counter of the reference to an object is maintained

When the counter goes to zero, the object becomes unreachable (discussed in the
next section)

108
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53HOW FINDING UNREACHABLE OBJECTS? (CONT.)

Approach #2

Reachability is computed by tracing all the references transitively

Trace-based garbage collector starts by labeling/marking all objects in the root set
as “reachable”

Examine iteratively all the references in reachable objects to find more reachable
objects

Mark the discovered objects as “reachable”

Once the reachable set is computed, GC may find the unreachable objects

All the unreachable objects could be deallocated at the same time

109
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management

5 Garbage collection
Properties of a garbage collector
Reachability of data
Reference-counting garbage collector
Trace-based garbage collector
Short-pause garbage collector

6 Conclusion

110
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53REFERENCE-COUNTING GARBAGE COLLECTOR

C
o
ll
in
s.
1
9
6
0

Simple and imperfect
garbage collector based on
reference counting

Every object must have a
field for the reference
counting
Additional field is
maintained as described in
the following slides

111
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53ACTIONS OF REFERENCE-COUNTING GC

Object Allocation

Reference counter of the new object is set to 1

Parameter Passing

Reference counter of each object passed into a procedure is incremented

Procedure Returns

As a procedure exists, objects referred by the local variables in its activation record
have their counters decremented
If several local variables hold references to the same object, that object’s counter must
be decremented once for each such reference

112
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53ACTIONS OF REFERENCE-COUNTING GC (CONT.)

Reference Assignment

For statement u=v (u and v are references):
counter of the object referred by v is incremented
counter of the old object referred by u is decremented

Transitive Loss of Reachability

When the reference counter of an object becomes zero, the counter of each object
pointed by a reference within the object is decremented

113
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}

c l a s s Main {
pub l i c s t a t i c vo id main (

S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
}

}

root = stack+static

114
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}

c l a s s Main {
pub l i c s t a t i c vo id main (

S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
}

}

root = stack+static
o1

Refs=1

114
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}

c l a s s Main {
pub l i c s t a t i c vo id main (

S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
}

}

root = stack+static
o1 o2

Refs=1

Refs=1

114
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}

c l a s s Main {
pub l i c s t a t i c vo id main (

S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
}

}

root = stack+static
o1 o2 o3

Refs=1

Refs=1

Refs=1

114
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}

c l a s s Main {
pub l i c s t a t i c vo id main (

S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
}

}

root = stack+static
o1 o2 o3

Refs=1

Refs=2

Refs=1

114
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}

c l a s s Main {
pub l i c s t a t i c vo id main (

S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
}

}

root = stack+static
o1 o2 o3

Refs=2

Refs=2

Refs=1

114
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}

c l a s s Main {
pub l i c s t a t i c vo id main (

S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
}

}

root = stack+static
o1 o2 o3

Refs=2

Refs=2

Refs=2

114
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}

c l a s s Main {
pub l i c s t a t i c vo id main (

S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
}

}

root = stack+static
o1 o2 o3

Refs=3

Refs=2

Refs=2

114
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}

c l a s s Main {
pub l i c s t a t i c vo id main (

S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
}

}

root = stack+static
o1

Refs=3

Refs=1

Refs=1

114
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}

c l a s s Main {
pub l i c s t a t i c vo id main (

S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
}

}

root = stack+static

Refs=2

Refs=1

Refs=1

114
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLE OF REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}

c l a s s Main {
pub l i c s t a t i c vo id main (

S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
}

}

This set of objects should be garbage collected. But
their counters are greater than 0
Such a situation is tantamount to a memory leak, since
this set of objects will never be deallocated

root = stack+static

Refs=2

Refs=1

Refs=1

114
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53SOLVING MEMORY LEAK WITH REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}
c l a s s Main {

pub l i c s t a t i c vo id main (
S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
o1 . b = n u l l ;

}
}

A line is added to reset the reference from o1 to o2

root = stack+static
o1

Refs=3

Refs=1

Refs=1

115
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53SOLVING MEMORY LEAK WITH REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}
c l a s s Main {

pub l i c s t a t i c vo id main (
S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
o1 . b = n u l l ;

}
}

root = stack+static
o1

Refs=3

Refs=0

Refs=1

115
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53SOLVING MEMORY LEAK WITH REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}
c l a s s Main {

pub l i c s t a t i c vo id main (
S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
o1 . b = n u l l ;

}
}

root = stack+static

Refs=2

Refs=0

Refs=1

115
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53SOLVING MEMORY LEAK WITH REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}
c l a s s Main {

pub l i c s t a t i c vo id main (
S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
o1 . b = n u l l ;

}
}

Chunk, previously referred by o2, is no more referenced
It is garbage collected

root = stack+static

Refs=1

Refs=0

115
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53SOLVING MEMORY LEAK WITH REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}
c l a s s Main {

pub l i c s t a t i c vo id main (
S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
o1 . b = n u l l ;

}
}

Chunk previously referred by o3 is garbage collected

root = stack+static

Refs=0

115
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53SOLVING MEMORY LEAK WITH REFERENCE-COUNTING GARBAGE COLLECTOR

c l a s s Obj {
pub l i c Obj a = n u l l ;
pub l i c Obj b = n u l l ;

}
c l a s s Main {

pub l i c s t a t i c vo id main (
S t r i n g [] a r g s) {
Obj o1 = new Obj () ;
{

Obj o2 = new Obj () ;
Obj o3 = new Obj () ;
o1 . b = o2 ;
o2 . a = o1 ;
o2 . b = o3 ;
o3 . b = o1 ;

}
o1 . b = n u l l ;

}
}

Chunk previously referred by o1 is garbage collected
There is no memory leak

Weak references in several languages (e.g., Java) may
be a good replacement for the added line

root = stack+static

115
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53DEFERRED REFERENCE COUNTING

Definition

Mean to eliminate the overhead associated with updating the reference counters due to
stack accesses

Reference counts do not include references from the root set of the program

An object is not considered to be garbage until the entire root set is scanned and
no reference to the object is found

116
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53ADVANTAGES OF REFERENCE COUNTING GC

1 Garbage Collection is performed in an incremental fashion.

The operations are made through the mutator’s operations.
Removing one reference may render a large number of objects unreachable, the
operation of recursively modifying reference counts can easily be deferred and
performed piecemeal across time.
Reference counting is particularly attractive when timing deadlines must be met.

2 Garbage are collected immediately, keeping space usage low.

117
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53DISADVANTAGES OF REFERENCE COUNTING GC

1 Reference counting cannot collect unreachable, cyclic data structures.

Cyclic data structures are quite plausible.
Data structures often point back to their parent nodes, or point to each other as
cross references.

2 Overhead of reference counting is high:

Additional operations were introduced with each reference assignment.
Additional operations were introduced with each procedure call and exit.
The overhead is proportional to the amount of computation in the program, and not
just to the number of objects in the system.

118
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management

5 Garbage collection
Properties of a garbage collector
Reachability of data
Reference-counting garbage collector
Trace-based garbage collector
Short-pause garbage collector

6 Conclusion

119
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53TRACE-BASED GARBAGE COLLECTOR

[M
cC

ar
th
y,

1
9
6
0
]

Instead of collecting garbage
as it is created, trace-based
collectors run periodically to
find unreachable object

When free space is
exhausted or its amount
drops below a threshold

All trace-based algorithms:

1 compute the set of
reachable objects

2 take the complement of
this list

120
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

3 Stack management

4 Heap management

5 Garbage collection
Properties of a garbage collector
Reachability of data
Reference-counting garbage collector
Trace-based garbage collector

States of the chunks
Basic mark-and-sweep GC
Relocating collector: Mark-and-compact GC
Relocating collector: Copying GC
Brief Comparison

Short-pause garbage collector

6 Conclusion

121
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53STATES OF THE CHUNKS

Free

Chunk is in the Free state if it is ready to be allocated

Free chunk must not hold a reachable object

Allocated

Chunk is in the Allocated state if it was used to store data

Allocated chunk must be in one of the three substates:

1 Unreached
2 Unscanned
3 Scanned

Free Allocated

allocate

deallocate
122

MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STATES OF AN ALLOCATED CHUNK

Unreached

Unreached

Chunks are presumed unreachable, unless proven reachable by tracing

Chunk is in the Unreached state at any point during garbage collection if its
reachability has not yet been established

After a round of garbage collection, the state of a reachable object is reset to
Unreachable to get ready for the next round (see the next states)

123
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STATES OF AN ALLOCATED CHUNK

Unreached Unscanned

GC discovers a reference to the chunk

Unscanned

Chunk is in the Unscanned state if it is known as reachable, but its pointers have
not yet been scanned

Transition to Unscanned from Unreached occurs when we discover that chunk is
reachable.

123
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STATES OF AN ALLOCATED CHUNK

Unreached Unscanned

GC discovers a reference to the chunk

GC has treated
the chunk

Scanned

Scanned

Every Unscanned object will eventually be scanned and move to the Scanned state

To scan an object, each pointer within it and follow this pointer to the target
object

Scanned object can only contain references to other scanned or unscanned
objects, never to unreached objects
⇒ accessible chunks are moved to the Unscanned state if they are unreachable

123
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53STATES OF AN ALLOCATED CHUNK

Unreached Unscanned

GC discovers a reference to the chunk

GC has treated
the chunk

Scanned

deallocate

At end of GC algorihm,
after deallocation of
unreached chunks

At the end of its algorithm, GC deallocates the unreached chunks

Chunk states are set to “Unreached” for the next GC execution

123
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

3 Stack management

4 Heap management

5 Garbage collection
Properties of a garbage collector
Reachability of data
Reference-counting garbage collector
Trace-based garbage collector

States of the chunks
Basic mark-and-sweep GC
Relocating collector: Mark-and-compact GC
Relocating collector: Copying GC
Brief Comparison

Short-pause garbage collector

6 Conclusion

124
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53MARK-AND-SWEEP GC

[M
cC

ar
th
y,

1
9
6
0
]

Definition

Mark-and-sweep GC is “stop-the-world” algorithm

Find all the unreachable objects, and put them on the list of free space

Visits and “marks” all the reachable objects in the first tracing step

“Sweeps” the entire heap to free up unreachable objects

125
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53ALGORITHM OF THE MARK-AND-SWEEP COLLECTOR (#1)

Inputs : Root set of objects, a heap, and a free list (named Free), with all the unallocated
chunks of the heap

Output : Modified Free list after garbage has been removed

begin
/* MARKING PHASE */

Unscanned ← copy-of(root);
foreach o ∈ Unscanned do

reached bit[o] ← false
end
while ∃ o ∈ Unscanned do

Unscanned ← Unscanned \{o};
foreach r ∈ references in(o) do

if neg reached bit[r] then
reached bit[r] ← true;
Unscanned ← Unscanned ∪{r};

end

end

end

126
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53ALGORITHM OF THE MARK-AND-SWEEP COLLECTOR (#2)

/* SWEEPING PHASE */

Free ← ∅;
foreach c ∈ chunks do

if neg reached bit[c] then
Free ← Free ∪{c}

else
reached bit[c] ← false

end

end

end

127
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OPTIMIZING MARK-AND-SWEEP COLLECTOR

Problem

Final step in the mark-and-sweep algorithm is expensive

Not easy way to find unreachable objects without examining the entire heap

Improved Algorithm

Baker’s Mark-and-sweep Algorithm

Keeps a list of all allocated objects

Computes the difference between allocated objects and reached objects

128
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53BAKER’S ALGORITHM OF THE MARK-AND-SWEEP COLLECTOR (#1)

[B
a
ke
r,

1
9
9
2
]

Inputs : Root set of objects, heap, free list (named Free), list of allocated objects Unreached
Output : Modified Free and Unreached lists
begin

/* MARKING PHASE */

Unscanned ← ∅;
Scanned ← ∅;
foreach o ∈ root ∩ Unreached do

Unreached ← Unreached \{o}; Unscanned ← Unscanned ∪{o};
end
while ∃ o ∈ Unscanned do

Unscanned ← Unscanned \{o};
Scanned ← Scanned ∪{o};
foreach r ∈ references in(o) do

if r ∈ Unreached then
Unreached ← Unreached \{r};
Unscanned ← Unscanned ∪{r};

end

end

end

129
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53BAKER’S ALGORITHM OF THE MARK-AND-SWEEP COLLECTOR (#2)

[B
a
ke
r,

1
9
9
2
]

/* SWEEPING PHASE */

Free ← Free ∪ Unreached;
Unreached ← Scanned;

end

130
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

3 Stack management

4 Heap management

5 Garbage collection
Properties of a garbage collector
Reachability of data
Reference-counting garbage collector
Trace-based garbage collector

States of the chunks
Basic mark-and-sweep GC
Relocating collector: Mark-and-compact GC
Relocating collector: Copying GC
Brief Comparison

Short-pause garbage collector

6 Conclusion

131
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53RELOCATING COLLECTORS

Move reachable objects in
the heap to eliminate
memory fragmentation

After identifying holes,
relocate allocated objects at
one end of the heap
Rest of the memory
becomes a single free chunk

Two major approaches:

1 Mark-and-compact GC

2 Copying GC

132
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53MARK-AND-COMPACT GC

The mark-and-compact collector follows:

1 Marking Phase: similar to the mark-and-sweep algorithms

2 Object Relocation:

Allocated regions of the heap are scanned
Address of each reachable object is computed from the low end of the heap
Addresses are stored in a structure named NewLocation

3 Object Copy:

Objects are copied to their new locations
References in the objects to point to are updated

133
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53ALGORITHM OF THE MARK-AND-COMPACT COLLECTOR (#1)

Inputs : Root set of objects, heap, pointer marking the start of the free space (named Free)
Output : New value of pointer Free

begin
/* MARKING PHASE */

Unscanned ← copy of(root);
foreach o ∈ Unscanned do

reached bit[o] ← false;
end
while ∃ o ∈ Unscanned do

Unscanned ← Unscanned \{o};
foreach r ∈ references in(o) do

if neg reached bit[r] then
reached bit[r] ← true;
Unscanned ← Unscanned ∪{r};

end

end

end

134
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53ALGORITHM OF THE MARK-AND-COMPACT COLLECTOR (#2)

/* COMPUTE THE NEW LOCATIONS */

NewLocation ← [];
Free ← first address in the heap; foreach c ∈ chunks[0..] do

if reached bit[c] then
NewLocation[c] ← Free;
Free ← Free size of(c);

end

end

135
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53ALGORITHM OF THE MARK-AND-COMPACT COLLECTOR (#3)

/* RETARGET THE REFERENCES AND MOVE REACHED OBJECTS */

foreach c ∈ chunks[0..] do
if reached bit[c] then

foreach r ∈ references in(c) do
c.r ← NewLocation[c.r]

end
Copy c to NewLocation[c];

end

end
foreach r ∈ references in(root) do

r ← NewLocation[r]
end

end

136
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

3 Stack management

4 Heap management

5 Garbage collection
Properties of a garbage collector
Reachability of data
Reference-counting garbage collector
Trace-based garbage collector

States of the chunks
Basic mark-and-sweep GC
Relocating collector: Mark-and-compact GC
Relocating collector: Copying GC
Brief Comparison

Short-pause garbage collector

6 Conclusion

137
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53COPYING GC

[F
en

ic
h
el

a
n
d
Y
o
ch

el
so
n
,
1
9
6
9
,
C
h
en

ey
,
1
9
7
0
]

Copying GC reserves space to which the objects can move

Memory space is partitioned into two semispaces A and B

Mutator allocates in A until it fill up

Mutator is stopped and GC copies the reachable objects to B

When GC finished, the roles of A and B are reversed

Algorithm is proposed by C.J. Cheney [Cheney, 1970]

138
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

3 Stack management

4 Heap management

5 Garbage collection
Properties of a garbage collector
Reachability of data
Reference-counting garbage collector
Trace-based garbage collector

States of the chunks
Basic mark-and-sweep GC
Relocating collector: Mark-and-compact GC
Relocating collector: Copying GC
Brief Comparison

Short-pause garbage collector

6 Conclusion

139
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53COMPARING THE COSTS

Basic Mark-and-sweep: Proportional to the number of chunks in heap

Baker’s Mark-and-sweep: Proportional to the number of reached objects

Basic Mark-and-compact: Proportional to the number of chunks in the heap plus
the total size of the reached objects

Cheney’s Copying Collector: Proportional to the total of the reached objects

140
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management

5 Garbage collection
Properties of a garbage collector
Reachability of data
Reference-counting garbage collector
Trace-based garbage collector
Short-pause garbage collector

6 Conclusion

141
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53BE BETTER THAN TRACE-BASED COLLECTORS

Problem of the trace-based collectors

Trace-based collectors do stop-the-world GC

May introduce long pauses into execution of user programs

First Solution: Incremental Collection

Divide the work in time, by interleaving GC and mutation

Second Solution: Partial Collection

Divide the work in space, by collecting a subset of the garbage at a time

142
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

2 Data Storage

3 Stack management

4 Heap management

5 Garbage collection
Properties of a garbage collector
Reachability of data
Reference-counting garbage collector
Trace-based garbage collector
Short-pause garbage collector

Incremental short-pause GC
Partial short-pause GC

6 Conclusion

143
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53INCREMENTAL SHORT-PAUSE GC

Incremental short-pause GC is conservative:

While GC must not collect objects that are not garbage

It does not have to collect all the garbage in each round

Garbage left in memory is named floating garbage

Incremental GC overestimates the set of reachable objects

144
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53INCREMENTAL ALGORITHM

1 Program’s root set is processed automatically, without interference with the
mutator

2 After finding the initial set of unscanned objects, the mutator’s actions are
interleaved with the tracing step

3 During this period, any of the mutator’s actions that may change reachability are
recorded succinctly, in a side table

4 Side table is used by GC to adjust the memory allocation when the mutator’s
actions resume their execution

5 If there is not enough memory space, GC blocks the mutator until it finished to
collect garbage

145
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53REACHABLE OBJECTS

Set of reachable objects when tracing finished is:

(R ∪ New) \ Lost

R: set of reachable objects at the beginning of garbage collection

New : set of allocated objects during garbage collection

Lost: set of objects that have become unreachable due to lost references

146
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53PROBLEM OF THE COMPUTATION OF THE REACHABLE OBJECTS

It is expensive to compute an object’s reachability every time

Incremental GC does not attempt to collect all garbage at the end of the tracing

Every garbage left behind (floating garbage) should be a subset of the Lost objects

((R ∪ New) \ Lost) ⊆ S ⊆ (R ∪ New)

147
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53BASIC INCREMENTAL ALGORITHM

First, tracing algorithm is used to find the upper bounds of R ∪ New

Mutator behavior is modified during the tracing:

All references that existed before GC are preserved
All objects created are considered reachable immediately and are placed in the
Unscanned state

This scheme is conservative and finds R and New

But the cost is high because the algorithm intercept all the write operations and
remembers all the overwritten references

Following slides proposes a solution

148
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53INCREMENTAL REACHABILITY ANALYSIS

[D
ij
k
st
ra

et
a
l.
,
1
9
7
8
]

If mutator and tracing GC algorithm
are interleaved, then some reachable
objects may be misclassified as
unreachable

Because mutator may violate the
following invariant of GC algorithm:
Scanned object can only contain
references to other scanned or
unscanned objects, never unreached
objects

149
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLES OF VIOLATION

GC finds reachable object A and scans pointers within A, thereby putting A in the
Scanned state

Mutator stores a reference to an Unreached (but reachable) object B into the Scanned
object A. It does by copying a reference to B from an object C that is currently in the
Unreached or Unscanned state

Mutator loses reference to B in object C . It may have overwritten C ’s reference to B
before the reference is scanned, or C may have become unreachable and never have
reached the Unscanned state to have its reference scanned

A

Unreached

A

Scanned

150
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLES OF VIOLATION

GC finds reachable object A and scans pointers within A, thereby putting A in the
Scanned state

Mutator stores a reference to an Unreached (but reachable) object B into the Scanned
object A. It does by copying a reference to B from an object C that is currently in the
Unreached or Unscanned state

Mutator loses reference to B in object C . It may have overwritten C ’s reference to B
before the reference is scanned, or C may have become unreachable and never have
reached the Unscanned state to have its reference scanned

A

Scanned

C

Unscanned
B

Unreached

150
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53EXAMPLES OF VIOLATION

GC finds reachable object A and scans pointers within A, thereby putting A in the
Scanned state

Mutator stores a reference to an Unreached (but reachable) object B into the Scanned
object A. It does by copying a reference to B from an object C that is currently in the
Unreached or Unscanned state

Mutator loses reference to B in object C . It may have overwritten C ’s reference to B
before the reference is scanned, or C may have become unreachable and never have
reached the Unscanned state to have its reference scanned

A

Scanned

C

Unscanned
B

Unreached

150
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53AVOIDING THE VIOLATIONS

Write Barriers:

Intercepts writes of references into a Scanned object A
When the reference is to an Unreached object B, then classify the object B as
reachable and place it in an Unscanned state
or put the object A in an Unscanned state

Read Barriers:

Intercept the reads of references in Unreached or Unscanned objects
When the mutator reads reference to object A from an object in Unreached or
Unscanned state, classify A as reachable and put it in the Unscanned state

Transfer Barriers:

Intercept the loss of original reference in an Unreached or Unscanned object
When the mutator overwrites a reference in an Unreached or Unscanned object, save
the reference being overwritten, classify it as reachable, and place the reference itself
in the Unscanned state

151
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53COMPARISON OF THE MUTATOR BARRIERS

Write barriers: the most efficient of the barriers

Read barriers: more expensive because typically there are many more reads than
there are writes

Transfer barriers: not competitive; because many objects “die young,” this
approach would retain many unreachable objects

152
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

2 Data Storage

3 Stack management

4 Heap management

5 Garbage collection
Properties of a garbage collector
Reachability of data
Reference-counting garbage collector
Trace-based garbage collector
Short-pause garbage collector

Incremental short-pause GC
Partial short-pause GC

6 Conclusion

153
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53PARTIAL SHORT-PAUSE GC

Fact: “Objects typically die young”

These objects becomes unreachable before the GC is invoked

⇒ GC is cost effective with the approaches presented in the previous slides

The same “mature” objects were found and copied at every round of the GC

Two major approaches for effective GC

Generational GC

Train Algorithm

154
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53GENERAL PRINCIPLE OF THE GENERATIONAL GC

[L
ie
b
er
m
a
n
a
n
d
H
ew

it
t,

1
9
8
3
]

Structure

Heap is divided in partitions: 0, 1, . . . , n
(0 is for the younger data)

Behavior

Objects are created in partition 0

When the partition 0 fills up, this participation is GC and the reachable objects
are moved in partition 1

Same algorithm for partition 2 and 3, . . . n − 1 and n

155
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53CAR AND TRAIN DEFINITIONS

[H
u
d
so
n
a
n
d
M
o
ss
,
1
9
9
2
]

Train algorithm uses fixed-length partitions, called cars

Car

Car is a single disk block, assuming there are no object larger than disk blocks
OR
Car size could be larger, but it is fixed once and for all

Train

Cars are organized into trains

No limit to the number of cars in a train
No limit to the number of trains

156
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53GENERAL PRINCIPLES OF THE TRAIN ALGORITHM

Two approaches to collect the garbages

1 First car in lexicographic order is collected in one incremental garbage-collection
step:

Step similar to collection of the first partition in the generational algorithm, since a
“remembered” list of all points from outside the car is maintained
Objects with no references at all are identified, as well as garbage cycles that are
contained completely within this car
Reachable objects in the car are always moved to some other car, so each
garbage-collected car becomes empty and can be removed from the train

2 Sometimes, the first train has no external reference
There are no pointer from the root set to any car of the train, and the remembered
sets for the cars contain only references from other cars in the train, not from other
trains
In this situation, the train is a huge collection of cyclic garbage, and we delete the
entire train

157
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53GENERAL PRINCIPLES OF THE TRAIN ALGORITHM

Two approaches to collect the garbages

1 First car in lexicographic order is collected in one incremental garbage-collection
step:

Step similar to collection of the first partition in the generational algorithm, since a
“remembered” list of all points from outside the car is maintained
Objects with no references at all are identified, as well as garbage cycles that are
contained completely within this car
Reachable objects in the car are always moved to some other car, so each
garbage-collected car becomes empty and can be removed from the train

2 Sometimes, the first train has no external reference
There are no pointer from the root set to any car of the train, and the remembered
sets for the cars contain only references from other cars in the train, not from other
trains
In this situation, the train is a huge collection of cyclic garbage, and we delete the
entire train

157
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53GENERATIONAL GC VS. TRAIN ALGORITHM

Generational GC works most frequently on the area of the heap that contains the
youngest objects
It tends to collect a lot of garbage for relatively little work

Train algorithm does not spend a large proportion of time on young objects
It does limit the pauses due to garbage collection
Advantage is that we never have to do a complete garbage collection, as we do
occasionally for generational garbage collection

Good combination of strategies is to use generational collection for young objects,
and once heap becomes sufficiently mature, to “promote” it to a separate heap
that is managed by the train algorithm

158
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53OUTLINE

1 Introduction

2 Data Storage

3 Stack management

4 Heap management

5 Garbage collection

6 Conclusion

159
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.utbm.fr

DA53KEY CONCEPTS IN THE CHAPTER

Run-time Organization: To implement the abstractions embodied in the source
language, a compiler creates and manages a run-time environment in concert with
the operating system and the target machine. The run-time environment has
static data areas for the object code and the static data objects created at
compile time. It also has dynamic stack and heap areas for managing objects
created and destroyed as the target program executes

Control Stack: Procedure calls and returns are usually managed by a run-time
stack called the control stack. We can use a stack because procedure calls or
activations nest in time; that is, if p calls q, then this activation of q is nested
within this activation of p

160
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Stack Allocation: Storage for local variables can be allocated on a run-time stack
for languages that allow or require local variables to become inaccessible when
their procedures end. For such languages, each live activation has an activation
record (or frame) on the control stack, with the root of the activation tree at the
bottom, and the entire sequence of activation records on the stack corresponding
to the path in the activation tree to the activation where control currently resides.
The latter activation has its record at the top of the stack
Access to Nonlocal Data on the Stack: For languages like C that do not allow
nested procedure declarations, the location for a variable is either global or found
in the activation record on top of the run-time stack. For languages with nested
procedures, we can access nonlocal data on the stack through access links, which
are pointers added to each activation record. The desired nonlocal data is found
by following a chain of access links to the appropriate activation record. A display
is an auxiliary array, used in conjunction with access links, that provides an
efficient short-cut alternative to a chain of access links

161
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Heap Management: The heap is the portion of the store that is used for data that
can live indefinitely, or until the program deletes it explicitly. The memory
manager allocates and deallocates space within the heap. Garbage collection finds
spaces within the heap that are no longer in use and can therefore be reallocated
to house other data items. For languages that require it, the garbage collector is
an important subsystem of the memory manager

Exploiting Locality: By making good use of the memory hierarchy, memory
managers can influence the run time of a program. The time taken to access
different parts of memory can vary from nanoseconds to milliseconds. Fortunately,
most programs spend most of their time executing a relatively small fraction of
the code and touching only a small fraction of the data. A program has temporal
locality if it is likely to access to same memory locations again soon; it has spatial
locality if it is likely to access nearby memory locations soon

162
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Reducing Fragmentation: As the program allocates and deallocates memory, the
heap may get fragmented, or broken into large numbers of small noncontiguous
free spaces or holes. The best fit strategy (allocate the smallest available hole
that satisfies a request) has been found empirically to work well. While best fit
tends to improve space utilization, it may not be best for spatial locality.
Fragmentation can be reduced by combining or coalescing adjacent holes

Manual Deallocation: Manual memory management has two common failings:
not deleting data that can not be referenced is a memory-leak error, and
referencing deleted data is a dangling-pointer-reference error

Reachability: Garbage is data that cannot be referenced or reached. There are
two basic ways of finding unreachable objects: either catch the transition as a
reachable object turns unreachable, or periodically locate all the reachable objects
and infer that all remaining objects are unreachable

163
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Reference-Counting Collectors: maintain a count of the references to an object;
when the count transitions to zero, the object becomes unreachable. Such
collectors introduce the overhead of maintaining references and can fail to find
“cyclic” garbage, which consists of unreachable objects that reference each other,
perhaps through a chain of references

Trace-Based Garbage Collectors: iteratively examine or trace all references to find
reachable objects, starting with the root set consisting of objects that can be
accessed directly without having to dereference any pointers

Mark-and-Sweep Collectors: visit and mark all reachable objects in a first tracing
step and then sweep the heap to free up unreachable objects

Mark-and-Compact Collectors: improve upon mark-and-sweep; they relocate
objects in the heap to eliminate memory fragmentation

164
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Copying Collectors: break the dependency between tracing and finding free space.
They partition the memory into two semispaces, A and B. Allocation requests are
satisfied from one semispace, say A, until it fills up, at which point the garbage
collector takes over, copies the reachable objects to the other space, say B, and
reverses the roles of the semispaces

Incremental Collectors: Simple trace-based collectors stop the user program while
garbage is collected. Incremental collectors interleave the actions of the garbage
collector and the mutator or user program. The mutator can interfere with
incremental reachability analysis, since it can change the references within
previously scanned objects. Incremental collectors therefore play it safe by
overestimating the set of reachable objects; any “floating garbage” can be picked
up in the next round of collection

165
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53KEY CONCEPTS IN THE CHAPTER (CONT.)

Partial Collectors: also reduce pauses; they collect a subset of the garbage at a
time. The best known of partial-collection algorithms, generational garbage
collection, partitions objects according to how long they have been allocated and
collects the newly created objects more often because they tend to have shorter
lifetimes. An alternative algorithm, the train algorithm, uses fixed length
partitions, called cars, that are collected into trains. Each collection step is
applied to the first remaining car of the first remaining train. When a car is
collected, reachable objects are moved out to the other cars, so this car is left
with garbage and can be removed from the train. These two algorithms can be
used together to create a partial collector that applies the generational algorithm
to younger objects and the train algorithm to more mature objects

166
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53Bibliography of the Chapter (#1)

Baker, Jr, H. (1992).
The treadmill: real-time garbage collection without motion sickness.
ACM SIGPLAN Notices, 27(3):66–70.

Cheney, C. (1970).
A nonrecursive list compacting algorithm.
Comm. ACM, 13(11):677–678.

Dijkstra, E. (1960).
Recursive programming.
Numerishe Math., 2:312–318.

Dijkstra, E., Lamport, L., Martin, A., Scholten, C., and Steffens, E. (1978).
On-the-fly garbage collection: an exercise in cooperation.
Comm. ACM, 21(11):966–975.

Fenichel, R. and Yochelson, J. (1969).
A lisp garbage-collector for virtual memory computer systems.
Comm. ACM, 12(11):611–612.

Hudson, R. and Moss, J. (1992).
Incremental collection of mature objects.
In Intl. Workshop on Memory Management, Lecture Notes in Computer Science, number 637, pages 388–403.

Johnson, S. and Ritchie, D. (1981).
The C language calling sequence.
Computing Science Technical Report 102, Bell Laboratories, Murray Hill, NJ.

167
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53Bibliography of the Chapter (#2)

Knuth, D. (1968).
Art of Computer Programming, Fundamental Algorithms, volume 1.
Addison-Wesley, Boston, MA.

Lieberman, H. and Hewitt, C. (1983).
A real-time garbage collector based on the lifetimes of objects.
Comm. ACM, 26(6):419–429.

McCarthy, J. (1960).
Recursive functions of symbolic expressions and their computation by machine.
Comm. ACM, 3(4):184–195.

Randell, B. and Russel, L. (1964).
ALGOL 60 Implementation.
Academic Press.

Wilson, P. (1994).
Uniprocessor garbage collection techniques.

168
MEMBRE DE

Introduction Data Storage Stack management Heap management Garbage collection Conclusion

DA53

Thank you for your attention. . .

DA53

Appendix

DA53CREATIVE COMMON LICENSE CC-BY-NC-SA 3.0

“Compilation and Language Theory” by Stéphane GALLAND is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License.

You are free
To Share to copy, distribute and transmit the work

To Remix to adapt the work

Under the following conditions

Attribution You must attribute the work in the manner specified by the author or licensor (but
not in any way that suggests that they endorse you or your use of the work).

Noncommercial You may not use this work for commercial purposes.

Share alike If you alter, transform, or build upon this work, you may distribute the resulting work
only under the same or similar license to this one.

Greetings: icons are from The Noun Project
(https://thenounproject.com) under CC license

i
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

https://thenounproject.com
http://www.utbm.fr

DA53SOURCE AND GENERATION DETAILS

History

2012-2021: Slides for the module LO46
Since 2021: Renaming LO46 to DA53

Sources

The LATEX code of this document is available at
https://github.com/gallandarakhneorg/da53-lessons

Generation

This document is generated January 9, 2023 with the following tools:

LATEX

Beamer

CIAD style for Beamer (version 2022/02/10) —
https://github.com/gallandarakhneorg/tex-templates

AutoLaTeX — http://www.arakhne.org/autolatex

ii
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

https://github.com/gallandarakhneorg/da53-lessons
https://github.com/gallandarakhneorg/tex-templates
http://www.arakhne.org/autolatex
http://www.utbm.fr

DA53AUTHOR: PROF.DR. STÉPHANE GALLAND

Full Professor

Université de Technologie de Belfort-Montbéliard
Université de Bourgogne-Franche-Comté, France

Deputy Director of the CIAD Laboratory

Topics: Multiagent systems, Agent-based simulation,
Agent-oriented software engineering, Mobility and traffic
modeling

Web page: http://www.ciad-lab.fr/author-10836/

Email: stephane.galland@utbm.fr

Open-source contributions:
http://www.sarl.io

http://www.janusproject.io

http://www.aspecs.org

http://www.arakhne.org

https://github.com/gallandarakhneorg/

iii
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

http://www.ciad-lab.fr/author-10836/
mailto:stephane.galland@utbm.fr
http://www.sarl.io
http://www.janusproject.io
http://www.aspecs.org
http://www.arakhne.org
https://github.com/gallandarakhneorg/
http://www.utbm.fr

DA53CONTRIBUTOR #1: YANN LE VAGUERÈS

Computer Science Department

Université de Technologie de Belfort-Montbéliard

Université de Bourgogne-Franche-Comté, France

Web page: https://therolf.fr

Email: yann.le-vagueres@utbm.fr

Contributions:
In this document: fixing of issues in the text and examples.

Open Source: https://github.com/TheRolfFR

iv
MEMBRE DEccO 2012–2023 Stéphane Galland – stephane.galland@utbm.fr

UTBM – http://www.utbm.fr

https://therolf.fr
mailto:yann.le-vagueres@utbm.fr
https://github.com/TheRolfFR
http://www.utbm.fr

	Overview of the module DA53
	Module organization
	Recommendations
	Books

	Overview of the Compilation Theory
	Introduction
	Programming languages
	Brief history
	Classifications and types of programming languages
	Basics of programming languages

	What is a language processor?
	Process of a compiler
	Tools to create a compiler
	Conclusion

	Lexical Analysis
	Introduction
	General principles
	Definitions
	Separating the lexical analyzer and the parser
	Lexical errors

	Input buffering
	Specification and recognition of tokens
	Definitions and operations on languages
	Regular expressions
	Regular definitions
	Recognition of tokens

	Writing a lexical analyzer with Lex, Flex, JFlex, JavaCC
	Lex Generator
	Java generators

	Writing a lexical analyzer by hand
	Finite automata
	Building a Lexical Analyzer

	Conclusion

	Syntax Analysis
	Introduction
	General principles
	Error recovery

	Context-free grammar
	Definition and notation
	Derivations and Parse Tree
	Ambiguity of a grammar
	Verifying the language supported by a grammar
	Context-free grammar and regular expression
	Optimizing the Grammar

	Parsing with a grammar
	FIRST and FOLLOW functions
	Top-down parsing
	Bottom-up parsing
	LR(k) parsing

	Generate a syntactic parser with Yacc or JavaCC
	Overview
	Yacc/Bison
	JavaCC

	Conclusion

	Semantic Analysis and Intermediate Code Generation
	Introduction
	Translation scheme
	Syntax-directed definition
	Attributes of the productions
	Evaluating a SDD with a parse tree
	Dependency graph
	S-attributed definition
	L-attributed definition

	Syntax tree and graph
	Syntax tree
	Directed acyclic graph

	Three-address code
	Language basics
	Quadruple form
	Triple form
	Indirect triple form
	Static single-assignment form

	Code generation of variables
	Types and declarations
	Expressions
	Type checking

	Code generation of statements
	Control flow
	Backpatching

	Conclusion

	Run-time Environments
	Introduction
	Data Storage
	Stack management
	Stack allocation
	Access to nonlocal data on the stack

	Heap management
	Memory manager
	Locality in programs
	Allocation and deallocation
	Manual deallocation

	Garbage collection
	Properties of a garbage collector
	Reachability of data
	Reference-counting garbage collector
	Trace-based garbage collector
	Short-pause garbage collector

	Conclusion

	Appendix
	Document License
	Document Details
	About the Author and Contributors

